POWER ELECTRONICS HANDBOOK
Academic Press Series in Engineering
J. David Irwin, Auburn University, Series Editor

This is a series that will include handbooks, textbooks, and professional reference books on cutting-edge areas of engineering. Also included in this series will be single-authored professional books on state-of-the-art techniques and methods in engineering. Its objective is to meet the needs of academic, industrial, and governmental engineers, as well as to provide instructional material for teaching at both the undergraduate and graduate level.

The series editor, J. David Irwin, is one of the best-known engineering educators in the world. Irwin has been chairman of the electrical engineering department at Auburn University for 27 years.

Published books in the series:
Control of Induction Motors, 2001, A. Trzynadlowski
Embedded Microcontroller Interfacing for MeoR Systems, 2000, G. J. Lipovski
Introduction to Microcontrollers, 1999, G. J. Lipovski
Industrial Controls and Manufacturing, 1999, E. Kamen
DSP Integrated Circuits, 1999, L. Wanhammar
Time Domain Electromagnetics, 1999, S. M. Rao
Single- and Multi-Chip Microcontroller Interfacing, 1999, G. J. Lipovski
Control in Robotics and Automation, 1999, B. K. Ghosh, N. Xi, and T. J. Tarn
POWER ELECTRONICS HANDBOOK

EDITOR-IN-CHIEF
MUHAMMAD H. RASHID
Ph.D., Fellow IEE, Fellow IEEE
Professor and Director
University of Florida/University of West Florida Joint Program and Computer Engineering
University of West Florida
Pensacola, Florida

ACADEMIC PRESS
A Harcourt Science and Technology Company
SAN DIEGO / SAN FRANCISCO / NEW YORK / BOSTON / LONDON / SYDNEY / TOKYO

Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Power Electronics Defined.</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Key Characteristics.</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Trends in Power Supplies</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Conversion Examples</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Tools For Analysis and Design</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Summary</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>The Power Diode</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Diode as a Switch</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Some Properties of PN Junction</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Common Diode Types</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Typical Diode Ratings</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Snubber Circuits for Diode</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Series and Parallel Connection of Power Diodes</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>Typical Applications of Diodes</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Standard Datasheet for Diode Selection</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Thyristors</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Basic Structure and Operation</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Static Characteristics</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Dynamic Switching Characteristics</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Thyristor Parameters</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Types of Thyristors</td>
<td>38</td>
</tr>
<tr>
<td>3.7</td>
<td>Gate Drive Requirements</td>
<td>45</td>
</tr>
<tr>
<td>3.8</td>
<td>PSpice Model</td>
<td>47</td>
</tr>
<tr>
<td>3.9</td>
<td>Applications</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Gate Turn-Off Thyristors</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Basic Structure and Operation</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>GTO Thyristor Models</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Static Characteristics</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Switching Phases</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>SPICE GTO Model</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Applications</td>
<td>61</td>
</tr>
</tbody>
</table>
Contents

5 Power Bipolar Transistors Marcelo Godoy Simões ... 63
 5.1 Introduction .. 63
 5.2 Basic Structure and Operation 64
 5.3 Static Characteristics 65
 5.4 Dynamic Switching Characteristics 68
 5.5 Transistor Base Drive Applications 69
 5.6 SPICE Simulation of Bipolar Junction Transistors 71
 5.7 BJT Applications 72

6 The Power MOSFET Issa Batarseh ... 75
 6.1 Introduction .. 75
 6.2 The Need for Switching in Power Electronic Circuits 76
 6.3 General Switching Characteristics 78
 6.4 The Power MOSFET 80
 6.5 MOSFET Structure 81
 6.6 MOSFET Regions of Operation 83
 6.7 MOSFET PSPICE Model 93
 6.8 Comparison of Power Devices 96
 6.9 Future Trends in Power Devices 98

7 Insulated Gate Bipolar Transistor S. Abedinpour and K. Shenai 101
 7.1 Introduction .. 101
 7.2 Basic Structure and Operation 102
 7.3 Static Characteristics 104
 7.4 Dynamic Switching Characteristics 105
 7.5 IGBT Performance Parameters 107
 7.6 Gate-Drive Requirements 109
 7.7 Circuit Models 111
 7.8 Applications 113

8 MOS Controlled Thyristors (MCTs) S. Yuvarajan .. 117
 8.1 Introduction .. 117
 8.2 Equivalent Circuit and Switching Characteristics 118
 8.3 Comparison of MCT and Other Power Devices 119
 8.4 Gate Drive for MCTs 120
 8.5 Protection of MCTs 120
 8.6 Simulation Model of an MCT 121
 8.7 Generation-1 and Generation-2 MCTs 121
 8.8 N-channel MCT 121
 8.9 Base Resistance-Controlled Thyristor [14] 121
 8.10 MOS Turn-Off Thyristor [15] 122
 8.11 Applications of PMCT 122
 8.12 Conclusions .. 124
 8.13 Appendix ... 124

9 Static Induction Devices Bogdan M. Wilamowski .. 127
 9.1 Introduction .. 127
 9.2 Theory of Static Induction Devices 127
 9.3 Characteristics of Static Induction Transistor 128
 9.4 Bipolar Mode Operation of SI Devices (BSIT) 130
 9.5 Emitters for Static Induction Devices 130
 9.6 Static Induction Diode (SID) 131
 9.7 Lateral Punch-Through Transistor (LPTT) 132
 9.8 Static Induction Transistor Logic (SITL) 132
 9.9 BJT Saturation Protected by SIT 132
 9.10 Static Induction MOS Transistor (SIMOS) 133
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Diode Rectifiers</td>
<td>Yim-Shu Lee and Martin H. L. Chow</td>
<td>139</td>
</tr>
<tr>
<td>11</td>
<td>Single-Phase Controlled Rectifiers</td>
<td>Jose Rodríguez and Alejandro Weinstein</td>
<td>169</td>
</tr>
<tr>
<td>12</td>
<td>Three-Phase Controlled Rectifiers</td>
<td>Juan W. Dixon</td>
<td>183</td>
</tr>
<tr>
<td>13</td>
<td>DC-DC Converters</td>
<td>Dariusz Czarkowski</td>
<td>211</td>
</tr>
<tr>
<td>14</td>
<td>Inverters</td>
<td>José R. Espinoza</td>
<td>225</td>
</tr>
<tr>
<td>15</td>
<td>Resonant and Soft-Switching Converters</td>
<td>S. Y. (Ron) Hui and Henry S. H. Chung</td>
<td>271</td>
</tr>
</tbody>
</table>

Contents
Contents

15.14 Soft-Switching DC-AC Power Inverters 294

16 AC-AC Converters
Ajit K. Chattopadhyay

16.1 Introduction ... 307
16.2 Single-Phase AC/AC Voltage Controller 307
16.3 Three-Phase AC/AC Voltage Controllers 312
16.4 Cycloconverters 316
16.5 Matrix Converter 327
16.6 Applications of AC/AC Converters 331

17 DC/DC Conversion Technique and Nine Series LUO-Converters
Fang Lin Luo, Hong Ye, and Muhammad H. Rashid

17.1 Introduction ... 335
17.2 Positive Output Luo-Converters 337
17.3 Negative Output Luo-Converters 353
17.4 Double Output Luo-Converters 359
17.5 Multiple-Quadrant Operating Luo-Converters 372
17.6 Switched-Capacitor Multiquadrant Luo-Converters 377
17.7 Switched-Inductor Multiquadrant Luo-Converters 386
17.8 Multiquadrant ZCS Quasi-Resonant Luo-Converters 390
17.9 Multiquadrant ZVS Quasi-Resonant Luo-Converters 394
17.10 Synchronous Rectifier DC/DC Luo-Converters 397
17.11 Gate Control, Luo-Resonator 401
17.12 Applications .. 402

18 Gate Drive Circuits
M. Syed J. Asghar

18.1 Introduction ... 407
18.2 Thyristor Gate Requirements 407
18.3 Trigger Circuits for Thyristors 409
18.4 Simple Gate Trigger Circuits for Thyristors 410
18.5 Drivers for Gate Commutation Switches 422
18.6 Some Practical Driver Circuits 427

19 Control Methods for Power Converters
J. Fernando Silva

19.1 Introduction ... 431
19.2 Power Converter Control using State-Space Averaged Models 432
19.3 Sliding-Mode Control of Power Converters 450
19.4 Fuzzy Logic Control of Power Converters 481
19.5 Conclusions .. 484

20 Power Supplies
Y. M. Lai

20.1 Introduction ... 487
20.2 Linear Series Voltage Regulator 488
20.3 Linear Shunt Voltage Regulator 491
20.4 Integrated Circuit Voltage Regulators 492
20.5 Switching Regulators 494

21 Electronic Ballasts
J. Marcos Alonso

21.1 Introduction ... 507
21.2 High-Frequency Supply of Discharge Lamps 513
21.3 Discharge Lamp Modeling 516
21.4 Resonant Inverters for Electronic Ballasts 519
21.5 High-Power-Factor Electronic Ballasts 527
21.6 Applications .. 529

22 Power Electronics in Capacitor Charging Applications
R. Mark Nelms

22.1 Introduction ... 533
22.2 High-Voltage dc Power Supply with Charging Resistor ... 533
23 Power Electronics for Renewable Energy Sources C. V. Nayar, S. M. Islam, and Hari Sharma
23.1 Introduction ... 539
23.2 Power Electronics for Photovoltaic Power Systems 540
23.3 Power Electronics for Wind Power Systems 562

24 HVDC Transmission Vijay K. Sood
24.1 Introduction .. 575
24.2 Main Components of HVDC Converter Station 580
24.3 Analysis of Converter Bridges 583
24.4 Controls and Protection 583
24.5 MTDC Operation ... 589
24.6 Applications ... 591
24.7 Modern Trends ... 592
24.8 DC System Simulation Techniques 595
24.9 Conclusion .. 596

25 Multilevel Converters and VAR Compensation Azeddine Draou, Mustapha Benghanem, and Ali Tahri
25.1 Introduction .. 599
25.2 Reactive Power Phenomena and Their Compensation 600
25.3 Modeling and Analysis of an Advanced Static VAR Compensator 603
25.4 Static VAR Compensator for the Improvement of Stability of a Turbo Alternator 612
25.5 Multilevel Inverters .. 615
25.6 The Harmonics Elimination Method for a Three-Level Inverter 619
25.7 Three-Level ASVC Structure Connected to the Network 622

26 Drive Types and Specifications Yahya Shakweh
26.1 Overview .. 629
26.2 Drive Requirements and Specifications 633
26.3 Drive Classifications and Characteristics 636
26.4 Load Profiles and Characteristics 641
26.5 Variable-Speed Drive Topologies 644
26.6 PWM VSI Drive .. 650
26.7 Applications .. 657
26.8 Summary ... 660

27 Motor Drives M. F. Rahman, D. Patterson, A. Cheok, and R. Betts
27.1 Introduction .. 663
27.2 DC Motor Drives ... 665
27.3 Induction Motor Drives 670
27.4 Synchronous Motor Drives 681
27.5 Permanent Magnet ac Synchronous Motor Drives 689
27.6 Permanent-Magnet Brushless dc (BLDC) Motor Drives 694
27.7 Servo Drives ... 704
27.8 Stepper Motor Drives 710
27.9 Switched-Reluctance Motor Drives 717
27.10 Synchronous Reluctance Motor Drives 727

28 Sensorless Vector and Direct-Torque-Controlled Drives Peter Vas and Pekka Tiitinen
28.1 General ... 735
28.2 Basic Types of Torque-Controlled Drive Schemes: Vector Drives, Direct-Torque-Controlled Drives 736
28.3 Motion Control DSPs by Texas Instruments 766

29 Artificial-Intelligence-Based Drives Peter Vas
29.1 General Aspects of the Application of AI-Based Techniques ... 769
29.2 AI-Based Techniques .. 770
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.3</td>
<td>AI Applications in Electrical Machines and Drives</td>
<td>773</td>
<td></td>
</tr>
<tr>
<td>29.4</td>
<td>Industrial Applications of AI in Drives by Hitachi, Yaskawa, Texas Instruments and SGS Thomson</td>
<td>774</td>
<td></td>
</tr>
<tr>
<td>29.5</td>
<td>Application of Neural-Network-Based Speed Estimators</td>
<td>774</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Fuzzy Logic in Electric Drives</td>
<td>Ahmed Rubaai</td>
<td>779</td>
</tr>
<tr>
<td>30.1</td>
<td>Introduction</td>
<td>779</td>
<td></td>
</tr>
<tr>
<td>30.2</td>
<td>The Fuzzy Logic Concept</td>
<td>779</td>
<td></td>
</tr>
<tr>
<td>30.3</td>
<td>Applications of Fuzzy Logic to Electric Drives</td>
<td>784</td>
<td></td>
</tr>
<tr>
<td>30.4</td>
<td>Hardware System Description</td>
<td>788</td>
<td></td>
</tr>
<tr>
<td>30.5</td>
<td>Conclusion</td>
<td>789</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Automotive Applications of Power Electronics</td>
<td>David J. Perreault, Khurram K. Afridi, and Ifitkhar A. Khan</td>
<td>791</td>
</tr>
<tr>
<td>31.1</td>
<td>Introduction</td>
<td>791</td>
<td></td>
</tr>
<tr>
<td>31.2</td>
<td>The Present Automotive Electrical Power System</td>
<td>792</td>
<td></td>
</tr>
<tr>
<td>31.3</td>
<td>System Environment</td>
<td>792</td>
<td></td>
</tr>
<tr>
<td>31.4</td>
<td>Functions Enabled by Power Electronics</td>
<td>797</td>
<td></td>
</tr>
<tr>
<td>31.5</td>
<td>Multiplexed Load Control</td>
<td>801</td>
<td></td>
</tr>
<tr>
<td>31.6</td>
<td>Electromechanical Power Conversion</td>
<td>803</td>
<td></td>
</tr>
<tr>
<td>31.7</td>
<td>Dual/High-Voltage Automotive Electrical System</td>
<td>808</td>
<td></td>
</tr>
<tr>
<td>31.8</td>
<td>Electric and Hybrid Electric Vehicles</td>
<td>812</td>
<td></td>
</tr>
<tr>
<td>31.9</td>
<td>Summary</td>
<td>813</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Power Quality</td>
<td>S. Mark Halpin and Angela Card</td>
<td>817</td>
</tr>
<tr>
<td>32.1</td>
<td>Introduction</td>
<td>817</td>
<td></td>
</tr>
<tr>
<td>32.2</td>
<td>Power Quality</td>
<td>818</td>
<td></td>
</tr>
<tr>
<td>32.3</td>
<td>Reactive Power and Harmonic Compensation</td>
<td>823</td>
<td></td>
</tr>
<tr>
<td>32.4</td>
<td>IEEE Standards</td>
<td>827</td>
<td></td>
</tr>
<tr>
<td>32.5</td>
<td>Conclusions</td>
<td>828</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Active Filters</td>
<td>Luis Morán and Juan Dixon</td>
<td>829</td>
</tr>
<tr>
<td>33.1</td>
<td>Introduction</td>
<td>829</td>
<td></td>
</tr>
<tr>
<td>33.2</td>
<td>Types of Active Power Filters</td>
<td>829</td>
<td></td>
</tr>
<tr>
<td>33.3</td>
<td>Shunt Active Power Filters</td>
<td>830</td>
<td></td>
</tr>
<tr>
<td>33.4</td>
<td>Series Active Power Filters</td>
<td>841</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Computer Simulation of Power Electronics and Motor Drives</td>
<td>Michael Giesselmann</td>
<td>853</td>
</tr>
<tr>
<td>34.1</td>
<td>Introduction</td>
<td>853</td>
<td></td>
</tr>
<tr>
<td>34.2</td>
<td>Use of Simulation Tools for Design and Analysis</td>
<td>853</td>
<td></td>
</tr>
<tr>
<td>34.3</td>
<td>Simulation of Power Electronics Circuits with PSpice®</td>
<td>854</td>
<td></td>
</tr>
<tr>
<td>34.4</td>
<td>Simulations of Power Electronic Circuits and Electric Machines</td>
<td>857</td>
<td></td>
</tr>
<tr>
<td>34.5</td>
<td>Simulations of ac Induction Machines using Field Oriented (Vector) Control</td>
<td>860</td>
<td></td>
</tr>
<tr>
<td>34.6</td>
<td>Simulation of Sensorless Vector Control Using PSpice® Release 9</td>
<td>863</td>
<td></td>
</tr>
<tr>
<td>34.7</td>
<td>Simulations Using Simplorer®</td>
<td>868</td>
<td></td>
</tr>
<tr>
<td>34.8</td>
<td>Conclusions</td>
<td>870</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Packaging and Smart Power Systems</td>
<td>Douglas C. Hopkins</td>
<td>871</td>
</tr>
<tr>
<td>35.1</td>
<td>Introduction</td>
<td>871</td>
<td></td>
</tr>
<tr>
<td>35.2</td>
<td>Background</td>
<td>871</td>
<td></td>
</tr>
<tr>
<td>35.3</td>
<td>Functional Integration</td>
<td>872</td>
<td></td>
</tr>
<tr>
<td>35.4</td>
<td>Assessing Partitioning Technologies</td>
<td>874</td>
<td></td>
</tr>
<tr>
<td>35.5</td>
<td>Full-Cost Model [5]</td>
<td>877</td>
<td></td>
</tr>
<tr>
<td>35.6</td>
<td>Partitioning Approach</td>
<td>878</td>
<td></td>
</tr>
<tr>
<td>35.7</td>
<td>Example 2.2 kW Motor Drive Design</td>
<td>879</td>
<td></td>
</tr>
<tr>
<td>35.8</td>
<td>Acknowledgment</td>
<td>881</td>
<td></td>
</tr>
</tbody>
</table>

Index | 883 |
Introduction

The purpose of Power Electronics Handbook is to provide a reference that is both concise and useful for engineering students and practicing professionals. It is designed to cover a wide range of topics that make up the field of power electronics in a well-organized and highly informative manner. The Handbook is a careful blend of both traditional topics and new advancements. Special emphasis is placed on practical applications, thus, this Handbook is not a theoretical one, but an enlightening presentation of the usefulness of the rapidly growing field of power electronics. The presentation is tutorial in nature in order to enhance the value of the book to the reader and foster a clear understanding of the material.

The contributors to this Handbook span the globe, with fifty-four authors from twelve different countries, some of whom are the leading authorities in their areas of expertise. All were chosen because of their intimate knowledge of their subjects, and their contributions make this a comprehensive state-of-the-art guide to the expanding field of power electronics and its applications covering:

- the characteristics of modern power semiconductor devices, which are used as switches to perform the power conversions from ac-dc, dc-dc, dc-ac, and ac-ac;
- both the fundamental principles and in-depth study of the operation, analysis, and design of various power converters; and
- examples of recent applications of power electronics.

Power Electronics Backgrounds

The first electronics revolution began in 1948 with the invention of the silicon transistor at Bell Telephone Laboratories by Bardeen, Bratian, and Schockley. Most of today's advanced electronic technologies are traceable to that invention, and modern microelectronics has evolved over the years from these silicon semiconductors. The second electronics revolution began with the development of a commercial thyristor by the General Electric Company in 1958. That was the beginning of a new era of power electronics. Since then, many different types of power semiconductor devices and conversion techniques have been introduced.

The demand for energy, particularly in electrical forms, is ever-increasing in order to improve the standard of living. Power electronics helps with the efficient use of electricity, thereby reducing power consumption. Semiconductor devices are used as switches for power conversion or processing, as are solid state electronics for efficient control of the amount of power and energy flow. Higher efficiency and lower losses are sought for devices for a range of applications, from microwave ovens to high-voltage dc transmission. New devices and power electronic systems are now evolving for even more effective control of power and energy.

Power electronics has already found an important place in modern technology and has revolutionized control of power and energy. As the voltage and current ratings and switching characteristics of power semiconductor devices keep improving, the range of applications continues to expand in areas such as lamp controls, power supplies to motion control, factory automation, transportation, energy storage, multi-megawatt industrial drives, and electric power transmission and distribution. The greater efficiency and tighter control features of power electronics are becoming attractive for applications in motion control by replacing the earlier electro-mechanical and electronic systems. Applications in power transmission include high-voltage dc (VHDC) converter stations, flexible ac transmission system (FACTS), and static-var compensators. In power distribution these include dc-to-ac conversion, dynamic filters, frequency conversion, and Custom Power System.

Almost all new electrical or electromechanical equipment, from household air conditioners and computer power supplies to industrial motor controls, contain power electronic circuits.
and/or systems. In order to keep up, working engineers involved in control and conversion of power and energy into applications ranging from several hundred voltages at a fraction of an ampere for display devices to about 10,000 V at high-voltage dc transmission, should have a working knowledge of power electronics.

Organization

The Handbook starts with an introductory chapter and moves on to cover topics on power semiconductor devices, power converters, applications and peripheral issues. The book is organized into six areas, the first of which includes chapters on operation and characterizations of power semiconductor devices: power diode, thyristor, gate turn-off thyristor (GTO), power bipolar transistor (BJT), power MOSFET, insulated gate bipolar transistor, MOS controlled thyristor (MCT), and static induction devices.

The next topic area includes chapters covering various types of power converters, the principles of operation and the methods for the analysis and design of power converters. This also includes gate drive circuits and control methods for power converters. The next three chapters cover applications in power supplies, electronics ballasts, renewable energy sources, HVDC transmission, VAR compensation, and capacitor charging.

The following six chapters focus on the operation, theory and control methods of motor drives, and automotive systems. We then move on to two chapters on power quality issues and active filters, and two chapters on computer simulation, packaging and smart power systems.

Locating Your Topic

A table of contents is presented at the front of the book, and each chapter begins with its own table of contents. The reader should look over these tables of contents to become familiar with the structure, organization, and content of the book.

Audience

The Handbook is designed to provide both students and practicing engineers with answers to questions involving the wide spectrum of power electronics. The book can be used as a textbook for graduate students in electrical or systems engineering, or as a reference book for senior undergraduate students and for engineers who are interested and involved in operation, project management, design, and analysis of power electronics equipment and motor drives.

Acknowledgments

This Handbook was made possible through the expertise and dedication of outstanding authors from throughout the world. I gratefully acknowledge the personnel at Academic Press who produced the book, including Jane Phelan. In addition, special thanks are due to Joel D. Claypool, the executive editor for this book.

Finally, I express my deep appreciation to my wife, Fatema Rashid, who graciously puts up with my publication activities.

Muhammad H. Rashid, Editor-in-Chief
List of Contributors

Chapter 1
Philip Krein
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
341 William L. Everitt Laboratory
1406 West Green Street
Urbana, Illinois 61801
USA

Chapter 2
Ali I. Maswood
School of EEE
Nanyang Technological University
Nanyang Avenue
Singapore 639798

Chapter 3
Jerry Hudgins, Enrico Santi, Antonio Caiafa, Katherine Lengel
Department of Electrical Engineering
University of South Carolina
Columbia, South Carolina 29208
USA

Chapter 4
Muhammad H. Rashid
Electrical and Computer Engineering
University of West Florida
11000 University Parkway
Pensacola, Florida 32514-5754
USA

Chapter 5
Marcelo Godoy Simões
Engineering Division
Colorado School of Mines
Golden, Colorado 80401-1887
USA

Chapter 6
Issa Batarseh
College of Engineering and Computer Science
University of Central Florida
Orlando, Florida 32816
USA

Chapter 7
S. Abedinpour
Department of Electrical Engineering and Computer Science
University of Illinois at Chicago
Chicago, Illinois 60607
USA

K. Shenai
851 South Morgan Street (M/C 154)
Chicago, Illinois 60607-7053
USA

Chapter 8
S. Yuvarajan
Department of Electrical Engineering
North Dakota State University
P.O. Box 5285
Fargo, North Dakota 58105-5285
USA

Chapter 9
B. M. Wilamowski
College of Engineering
University of Idaho
Boise, ID 83712
USA
Chapter 10
Yim Shu Lee, Martin H. L. Chow
Department of Electronic and Information Engineering
The Hong Kong Polytechnic University
Hung Hom
Hong Kong

Chapter 11
José Rodríguez, Alejandro Weinstein
Department of Electronics
Universidad Técnica Federico, Santa María
Valparaíso
Chile

Chapter 12
Juan W. Dixon
Department of Electrical Engineering
Catholic University of Chile
Vicuña Mackenna 4860
Santiago
Chile

Chapter 13
Dariusz Czarkowski
Department of Electrical and Computer Engineering
Polytechnic University
Six Metrotech Center
Brooklyn, New York 11201
USA

Chapter 14
José R. Espinoza
Depto. Ing. Eléctrica, Of. 220
Universidad de Concepción
Casilla 160-C, Correo 3
Concepción
Chile

Chapter 15
S. Y. (Ron) Hui, Henry S. H. Chung
Department of Electronic Engineering
City University of Hong Kong
Tat Chee Avenue
Kowloon
Hong Kong

Chapter 16
Ajit K. Chattopadhyay
Electrical Engineering Department
Bengal Engineering College
Howrah-711 103
India

Chapter 17
Fang Lin Luo, Hong Ye
School of Electrical and Electronic Engineering
Block S2
Nanyang Technological University
Nanyang Avenue
Singapore 639798

Muhammad H. Rashid
Electrical and Computer Engineering
University of West Florida
11000 University Parkway
Pensacola, Florida 32514-5754
USA

Chapter 18
M. Syed J. Asghar
Department of Electrical Engineering
Aligarh Muslim University
Aligarh
India

Chapter 19
J. Fernando Silva
Instituto Superior Técnico
CAUTL, DEEC
Máquinas Eléctricas e Electrónica de Potência (24)
Technical University of Lisbon
Av. Rovisco Pais 1, 1049-001
Lisboa
Portugal

Chapter 20
Y. M. Lai
Department of Electronic and Information Engineering
The Hong Kong Polytechnic University
Hung Hom
Hong Kong

Chapter 21
J. Marcos Alonso
University of Oviedo
DIEECS – Tecnologia Electronica
Campus de Viesques s/n
Edificio de Electronica
33204 Gijon
Spain

Chapter 22
R. Mark Nelms
Department of Electrical and Computer Engineering
200 Broun Hall
Auburn University
Auburn, Alabama 36849
List of Contributors

Chapter 23
C. V. Nayar, S. M. Islam
Centre for Renewable Energy and Sustainable Technologies
Curtin University of Technology
Perth, Western Australia
Australia

Hari Sharma
ACRE (Australian CRC for Renewable Energy Ltd)/MUERI
Murdoch University
Perth, Western Australia
Australia

Chapter 24
Vijay K. Sood
Expertise-Équipements Électriques
Hydro-Quebec (IREQ)
1800 Lionel Boulet
Varennes, Quebec
Canada J3X 1S1

Chapter 25
Azeddine Draou, A. Tahri, M. Benghanem
University of Sciences and Technology of Oran
B.P. 29013 Oran-USTO
à Oran, Algeria

Chapter 26
Yahya Shakweh
Technical Director
FKI Industrial Drives & Controls
Meadow Lane
Loughborough, Leicestershire, LE11 1NB
UK

Chapter 27
M. F. Rahman
School of Electrical Engineering and Telecommunications
The University of New South Wales
Sydney, NSW 2052
Australia

D. Patterson
Northern Territory Centre for Energy Research
Faculty of Technology
Northern Territory University
Darwin, NT 0909
Australia

A. Cheok
Department of Electrical and Computer Engineering
National University of Singapore
10 Kent Ridge Crescent
Singapore 119260

Chapter 28
Peter Vas
Head of Intelligent Motion Control and Condition Monitoring Group
University of Aberdeen
Aberdeen AB24 3UE
UK

Chapter 29
Peter Vas
Head of Intelligent Motion Control and Condition Monitoring Group
University of Aberdeen
Aberdeen AB24 3UE
UK

Chapter 30
Ahmed Rubaai
Department of Electrical Engineering
Howard University
Washington, DC 20059
USA

Chapter 31
David J. Perreault
Massachusetts Institute of Technology
Laboratory for Electromagnetic and Electronic Systems
77 Massachusetts Avenue
Cambridge, Massachusetts 02139
USA

Khurram Afridi
Techlogix
800 West Cummings Park
Woburn, Massachusetts 01801
USA

Iftikhar A. Khan
Delphi, Automotive Systems
2705 South Goyer Road
MS D35,
Kokomo, Indiana 46904
USA
Chapter 32
S. Mark Halpin, Angela Card
Department of Electrical and Computer Engineering
Mississippi State University
Mississippi State, Mississippi 39762
USA

Chapter 33
Luis Morán, Juan Dixon
Department of Electrical Engineering
Universidad de Concepción
Concepción
Chile

Chapter 34
Michael Giesselmann
Department of Electrical Engineering
Texas Tech University
Lubbock, Texas 79409
USA

Chapter 35
Douglas C. Hopkins
Energy Systems Institute
State University of New York at Buffalo
Room 312, Bonner Hall
Buffalo, New York 14260-1900
USA
1.1 Power Electronics Defined

It has been said that people do not use electricity, but rather they use communication, light, mechanical work, entertainment, and all the tangible benefits of both energy and electronics. In this sense, electrical engineering is a discipline very much involved in energy conversion and information. In the general world of electronics engineering, the circuits engineers design and use are intended to convert information, with energy merely a secondary consideration in most cases. This is true of both analog and digital circuit design. In radio frequency applications, energy and information are sometimes on a more equal footing, but the main function of any circuit is that of information transfer.

What about the conversion and control of electrical energy itself? Electrical energy sources are varied and of many types. It is natural, then, to consider how electronic circuits and systems can be applied to the challenges of energy conversion and management. This is the framework of power electronics, a discipline that is defined in terms of electrical energy conversion, applications, and electronic devices. More specifically,

DEFINITION: Power electronics involves the study of electronic circuits intended to control the flow of electrical energy. These circuits handle power flow at levels much higher than the individual device ratings.

Rectifiers are probably the most familiar example of circuits that meet this definition. Inverters (a general term for dc-ac converters) and dc-dc converters for power supplies are also common applications. As shown in Fig. 1.1, power electronics represents a median point at which the topics of energy systems, electronics, and control converge and combine [1]. Any useful circuit design for the control of power must address issues of both devices and control, as well as of the energy itself. Among the unique aspects of power electronics are its emphasis on large semiconductor devices, the application of magnetic devices for energy storage, and special control methods that must be applied to nonlinear systems. In any study of electrical engineering, power electronics must be placed on a level with digital, analog, and radio-frequency electronics if we are to reflect its distinctive design methods and unique challenges.

The history of power electronics [2,3,4,5] has been closely allied with advances in electronic devices that provide the capability to handle high-power levels. Only in the past decade has there been a transition from a ”device-driven” field to an
“applications-driven” field. This transition has been based on two factors: advanced semiconductors with suitable power ratings exist for almost every application of wide interest; and the general push toward miniaturization is bringing advanced power electronics into a growing variety of products.

1.2 Key Characteristics

All power electronic circuits manage the flow of electrical energy between some sort of source and a load. The parts in a circuit must direct electrical flows, not impede them. A general power conversion system is shown in Fig. 1.2. The function of the power converter positioned at the middle is that of controlling energy flow between a given electrical source and a given load. For our purposes, the power converter will be implemented with a power electronic circuit. As a power converter appears between a source and a load, any energy used within the converter is lost to the overall system. A crucial point emerges — to build a power converter, we should consider only lossless components. A realistic converter design must approach 100% efficiency.

A power converter connected between a source and a load also affects system reliability. If the energy source is perfectly reliable (it is on all the time), then a failure in the converter affects the user (the load) just as if the energy source had failed. An unreliable power converter creates an unreliable system. To put this in perspective, consider that a typical American household loses electric power only a few minutes a year. Therefore, energy is available 99.999% of the time. A converter must be even better than this if system degradation is to be prevented. An ideal converter implementation will not suffer any failures over its application lifetime. In many cases, extremely high reliability can be a more difficult objective than that of high efficiency.

1.2.1 The Efficiency Objective: The Switch

A circuit element as simple as a light switch reminds us that the extreme requirements in power electronics are not especially novel. Ideally, when a switch is on, it has zero voltage drop and will carry any current imposed on it. When a switch is off, it blocks the flow of current regardless of the voltage across it. Device power, the product of the switch voltage and current, is identically zero at all times. The switch controls energy flow with no loss. In addition, reliability is also high. Household light switches perform over decades of use and perhaps 100,000 operations. Of course, a mechanical light switch does not meet all practical needs. A switch in a power supply often must function 100,000 times each second. Since even the best mechanical switch will not last beyond a few million cycles, semiconductor switches (without this limitation) are the devices of choice in power converters.

A circuit built from ideal switches will be lossless. As a result, switches are the main components of power converters, and many people equate power electronics with the study of switching power converters. Magnetic transformers and lossless storage elements such as capacitors and inductors are also valid candidates for use in power converters. The complete concept, shown in Fig. 1.3, illustrates a power electronic system. Such a system consists of an energy source, an electrical load, a power electronic circuit, and control functions. The power electronic circuit contains switches, lossless energy storage elements, and magnetic transformers. The controls take information from the source, load, and designer and then determine how the switches operate to achieve the desired conversion. The controls are usually built up with conventional low-power analog and digital electronics.
Switching devices are selected based on their power handling rating — the product of their voltage and currents ratings — rather than on power dissipation ratings. This is in contrast to other applications of electronics, in which power dissipation ratings dominate. For instance, a typical audio receiver performs a conversion from ac line input to audio output. Most audio amplifiers do not use the techniques of power electronics, and the semiconductor devices do not act as switches. A commercial 100 W amplifier usually is designed with transistors big enough to dissipate the full 100 W. The semiconductor devices are used primarily to reconstruct audio information rather than to manipulate energy flows. When the devices are used as switches instead, the power levels increase considerably, as suggested by the following examples.

EXAMPLE 1.1. The 2N2222A is a popular bipolar transistor with a rated collector-emitter breakdown voltage of 30 V, a maximum collector current of 0.8 A, and rated power dissipation of 0.5 W. In a conventional analog circuit, it usually handles energy within its 0.5 W power dissipation rating. In principle, this device can manipulate the flow of 0.8 A in a 30 V circuit and so a power electronics engineer would list its power handling rating as 24 W. The ability to control up to 24 W, combined with good switching characteristics, makes this device common as an auxiliary element in power supplies.

EXAMPLE 1.2. The MTW20N50 is a metal-oxide-semiconductor field-effect transistor (MOSFET) with a drain current rating of 20 A, a maximum drain-source breakdown voltage of 500 V, and rated power dissipation of 250 W. The power handling rating is 10 kW. Several manufacturers have developed power electronic controllers for domestic refrigerators, air conditioners, and even electric vehicles based on this device and its relatives.

The second part of the definition of power electronics in Section 1.1 points out that the circuits handle power at levels much higher than that of the ratings of individual devices. In the first Example, a 2N2222A might be used to handle 24 W — as compared with its individual rating of 0.5 W. The MTW20N50 is used to handle up to 10 kW, compared to its rating of 250 W. These ratios, 48 and 40, respectively, are high, but not unusual in power electronics contexts. In contrast, the same ratio in a conventional audio amplifier is close to unity.

1.2.2 The Reliability Objective: Simplicity and Integration

High-power applications lead to interesting issues. For example, in an inverter the semiconductors often manipulate 40 times their rated power or more. A small design error, unexpected thermal problem, or minor change in layout could alter this somewhat, perhaps to a factor of 45. This small change puts large additional stresses on the devices, and can lead to quick failure. The first issue for reliability in power electronic circuits is that of managing device voltage, current, and power dissipation levels to keep them well within rating limits. This can be challenging when power handling levels are high.

The second issue for reliability is simplicity. It is well-established in military electronics that the more parts there are in a system, the more likely it is to fail. Power electronic circuits tend to have few parts, especially in the main energy flow paths. Necessary operations must be carried out through shrewd use of these parts. Often, this means that sophisticated control strategies are applied to seemingly simple conversion circuits.

The third issue for reliability is integration. One way to avoid the reliability–complexity tradeoff is to integrate multiple components and functions on a single substrate. A microprocessor, for example, might contain more than a million gates. As all interconnections and signals flow within a single chip, the reliability is nearly that of a single part. An important parallel trend in power electronic devices involves the integrated module [6]. Manufacturers seek ways to package several switching devices, with their interconnections and protection components together as a unit. Control circuits for converters are also integrated as much as possible to keep reliability high. The package itself becomes a fourth issue for reliability, and one that is as yet only partly understood. Semiconductor packages include small bonding wires that can be susceptible to thermal or vibration damage. The small geometries tend to enhance electromagnetic interference among the internal circuit components.

1.3 Trends in Power Supplies

As costs of electronics decline, the power supply becomes a larger fraction of system cost and design effort. One major manufacturer estimates that power supply cost will soon reach 50% of the total cost of a typical electronic product such as a cordless telephone or personal computer. Thus, new technology developments in power supplies are critically important. In the past, bulky linear power supplies were designed with transformers and rectifiers from the ac line frequency to provide low-level dc voltages for electronic circuits. Late in the 1960s, use of dc sources in aerospace applications led to the development of power electronic dc-dc conversion circuits for power supplies. In a typical power electronics arrangement today, an ac source from a wall outlet is rectified without any transformation; the resulting high dc voltage is converted through a dc-dc circuit to the 5 V, 12 V, or other level required. These switched-mode power supplies are rapidly supplanting linear supplies across the full spectrum of circuit applications.

A personal computer commonly requires three different 5 V supplies, two +12 V supplies, a −12 V supply, a 24 V supply, and perhaps a few more. This does not include supplies for...
video display or peripheral devices. Only a switched-mode supply can support such complex requirements without high costs. The bulk and weight of linear supplies make them infeasible for hand-held communication devices, calculators, notebook computers, and similar equipment. Switched-mode supplies often take advantage of MOSFET semiconductor technology. Trends toward high reliability, low cost, and miniaturization have reached the point at which a 5 V power supply sold today might last 1,000,000 hr (more than 100 yr), provide 100 W of output in a package with volume < 15 cm³, and sell for a price of < $0.30 watt. This type of supply brings an interesting dilemma: the ac line cord to plug it in actually takes up more space than the power supply itself. Innovative concepts such as integrating a power supply within a connection cable will be used in the future.

Device technology for power supplies is being driven by expanding needs in the automotive and telecommunications industries as well as in markets for portable equipment. The automotive industry is making a transition to 42 V systems to handle increasing electric power needs. Power conversion for this industry must be cost effective, yet rugged enough to survive the high vibration and wide temperature range to which a passenger car is exposed. Global communication is possible only when sophisticated equipment can be used almost anywhere. This brings a special challenge, because electrical supplies are neither reliable nor consistent through-out much of the world. While in North America voltage swings in the domestic ac supply are often < ±5% around a nominal value, in many developing nations the swing can be ±25% — when power is available. Power converters for communications equipment must tolerate these swings, and must also be able to make use of a wide range of possible backup sources. Given the enormous size of worldwide markets for telephones and consumer electronics, there is a clear need for flexible-source equipment. Designers are challenged to obtain maximum performance from small batteries, and to create equipment with minimal energy requirements.

1.4 Conversion Examples

1.4.1 Single-Switch Circuits

Electrical energy sources can come in the form of dc voltage sources at various values, sinusoidal ac sources, polyphase sources, and many others. A power electronic circuit might be asked to transfer energy between two different dc voltage levels, between an ac source and a dc load, or between sources at different frequencies. It might be used to adjust an output voltage or power level, drive a nonlinear load, or control a load current. In this section, we consider a few basic converter arrangements and discuss energy conservation as a tool for analysis.

EXAMPLE 1.3. Consider the circuit shown in Fig. 1.4. It contains an ac source, a switch, and a resistive load. It is a simple but complete power electronic system. Let us assign a (somewhat arbitrary) control scheme to the switch. What if the switch is turned on whenever \(V_{ac} > 0 \), and turned off otherwise? The input and output voltage waveforms are shown in Fig. 1.5. The input has a time average of 0, and root mean square (RMS) value equal to \(V_{peak}/\sqrt{2} \), where \(V_{peak} \) is the maximum value of \(V_{ac} \). The output has a nonzero average value given by:

\[
\langle v_{out}(t) \rangle = \frac{1}{2\pi} \left(\int_{-\pi/2}^{\pi/2} V_{peak} \cos \theta \, d\theta + \int_{\pi/2}^{3\pi/2} 0 \, d\theta \right) = \frac{V_{peak}}{\pi} = 0.3183 V_{peak}
\]

and an RMS value equal to \(V_{peak}/2 \). Since the output has nonzero dc voltage content, the circuit can be used as an ac-dc converter. To make it more useful, a lowpass filter would be added between the output and the load to smooth out the ac portion. This filter needs to be lossless, and will be constructed from only inductors and capacitors.

The circuit in the preceding Example acts as a half-wave rectifier with a resistive load. With the hypothesized switch action, a diode can be substituted for the ideal switch. The example confirms that a simple switching circuit can perform power conversion functions. However, notice that a diode is not, in general, the same as an ideal switch. A diode places restrictions on the current direction, while a true switch would not. An ideal switch allows control over whether it is on or off, while a diode’s operation is constrained by circuit variables.

Consider a second half-wave circuit, now with a series inductor and capacitor. This circuit has ac voltage- and current-source input. This circuit operates much differently than the half-wave rectifier with resistive load. A diode will be on if forward biased, and off if reverse biased. In this circuit, an off diode will give a current of zero. When the diode is on, the circuit is the ac source with \(L-R \) load. Let

\[V_{av} \]
the ac voltage be \(V_0 \cos(\omega t) \). From Kirchhoff’s voltage law (KVL),

\[
V_0 \cos(\omega t) = L \frac{di}{dt} + Ri \tag{1.2}
\]

Let us assume that the diode is initially off (this assumption is arbitrary, and we will check it out as the example is solved). If the diode is off, the diode current \(i = 0 \), and the voltage across the diode will be \(v_{ac} \). The diode will become forward-biased when \(v_{ac} \) becomes positive. The diode will turn on when the input voltage makes a zero-crossing in the positive direction. This allows us to establish initial conditions for the circuit: \(i(t_0) = 0, \; t_0 = -\pi/(2\omega) \). The differential equation can be solved in a conventional way to give

\[
i(t) = V_0 \left[\frac{\omega L}{R^2 + \omega^2 L^2} \exp \left(-\frac{t}{\tau} - \frac{\pi}{2\omega L} \right) + \frac{R}{R^2 + \omega^2 L^2} \cos(\omega t) + \frac{\omega L}{R^2 + \omega^2 L^2} \sin(\omega t) \right] \tag{1.3}
\]

where \(\tau \) is the time constant \(L/R \). What about diode turn-off? One first guess might be that the diode turns off when the voltage becomes negative, but this is not correct. We notice from the solution that the current is not zero when the voltage first becomes negative. If the switch attempts to turn off, it must drop the inductor current to zero instantly. The derivative of current in the inductor \(di/dt \) would become negative infinite. The inductor voltage \(L(di/dt) \) similarly becomes negative infinite—and the devices are destroyed. What really happens is that the falling current allows the inductor to maintain forward bias on the diode. The diode will turn off only when the current reaches zero. A diode has definite properties that determine circuit action, and both voltage and current are relevant. Figure 1.7 shows the input and output waveforms for a time constant \(\tau \) equal to \(\approx 1/3 \) of the ac waveform period.

1.4.2 The Method of Energy Balance

Any circuit must satisfy conservation of energy. In a lossless power electronic circuit, energy is delivered from source to load, which is possible through an intermediate storage step. The energy flow must balance over time such that the energy drawn from the source matches that delivered to the load. The converter in Fig. 1.8 serves as an example of how the method of energy balance can be used to analyze circuit operation.

EXAMPLE 1.5. The switches in the circuit of Fig. 1.8 are controlled cyclically to operate in alternation: when the left switch is on, the right one is off, and so on. What does the circuit do if each switch operates half the time? The inductor and capacitor have large values. When the left switch is on, the source voltage \(V_{in} \) appears across the inductor. When the right switch is on, the output voltage \(V_{out} \) appears across the inductor. If this circuit is to be a useful converter, we want the inductor to receive energy from the source, then deliver it to the load without loss. Over time, this means that energy does not build up in the inductor (instead it flows through on average). The power into the inductor therefore must equal the power out, at least over a cycle. Therefore, the average power in should equal the average power out.
power out of the inductor. Let us denote the inductor current as \(i \). The input is a constant voltage source. Because \(L \) is large, this constant voltage source will not be able to change the inductor current quickly, and we can assume that the inductor current is also constant. The average power into \(L \) over the cycle period \(T \) is

\[
P_{in} = \frac{1}{T} \int_0^{T/2} V_{in} i \, dt = \frac{V_{in} i}{2}
\]

(1.4)

For the average power out of \(L \), we must be careful about current directions. The current out of the inductor will have a value \(-i\). The average output power is

\[
P_{out} = \frac{1}{T} \int_{T/2}^{T} -iV_{out} \, dt = -\frac{V_{out} i}{2}
\]

(1.5)

For this circuit to be useful as a converter, there is net energy flow from the source to the load over time. The power conservation relationship \(P_{in} = P_{out} \) requires that \(V_{out} = -V_{in} \).

The method of energy balance shows that when operated as described in the example, the circuit of Fig. 1.8 serves as a polarity reverser. The output voltage magnitude is the same as that of the input, but the output polarity is negative with respect to the reference node. The circuit is often used to generate a negative supply for analog circuits from a single positive input level. Other output voltage magnitudes can be achieved at the output if the switches alternate at unequal times.

If the inductor in the polarity reversal circuit is moved instead to the input, a step-up function is obtained. Consider the circuit of Fig. 1.9 in the following example.

EXAMPLE 1.6. The switches in Fig. 1.9 are controlled cyclically in alternation. The left switch is on for \(2/3 \) of each cycle, and the right switch for \(1/3 \) of each cycle. Determine the relationship between \(V_{in} \) and \(V_{out} \).

The inductor’s energy should not build up when the circuit is operating normally as a converter. A power balance calculation can be used to relate the input and output voltages. Again let \(i \) be the inductor current.
When the left switch is on, power is injected into the inductor. Its average value is

\[P_{\text{in}} = \frac{1}{T} \int_0^{2T/3} V_{\text{in}} i \, dt = \frac{2V_{\text{in}} i}{3} \quad (1.6) \]

Power leaves the inductor when the right switch is on. Again we need to be careful of polarities, and remember that the current should be set to negative to represent output power. The result is

\[P_{\text{out}} = \frac{1}{T} \int_0^T -(V_{\text{in}} - V_{\text{out}}) i \, dt = -\frac{V_{\text{in}} i}{3} + \frac{V_{\text{out}} i}{3} \]

\[(1.7) \]

When the input and output power are equated,

\[\frac{2V_{\text{in}} i}{3} = -\frac{V_{\text{in}} i}{3} + \frac{V_{\text{out}} i}{3}, \quad \text{and} \quad 3V_{\text{in}} = V_{\text{out}} \quad (1.8) \]

and we see that the output voltage is triple the input.

Many seasoned engineers find the dc-dc step-up function of Fig. 1.9 to be surprising. Yet Fig. 1.9 is just one example of such an action. Others (including flyback circuits related to Fig. 1.8) are used in systems from CRT electron guns to spark ignitions for automobiles.

All the circuits in the preceding examples have few components, provide useful conversion functions, and are efficient. If the switching devices are ideal, each circuit is lossless. Over the history of power electronics, development has tended to flow around the discovery of such circuits, that is, a circuit with a particular conversion function is discovered, analyzed, and applied. As the circuit moves from simple laboratory testing to a complete commercial product, control and protection functions are added. The power portion of the circuit remains close to the original idea. The natural question arises as to whether a systematic approach to conversion is possible. Can we start with a desired function and design an appropriate converter, rather than starting from the converter and working backwards toward the application? What underlying principles can be applied to design and analysis? In this introductory chapter, we will introduce a few of the key concepts. Keep in mind that while many of the circuits look deceptively simple, all are nonlinear systems with unusual behavior.

1.5 Tools For Analysis and Design

1.5.1 The Switch Matrix

The most readily apparent difference between a power electronic circuit and other types of electronic circuits is the switch action. In contrast to a digital circuit, the switches do not indicate a logic level. Control is effected by determining the times at which switches should operate. Whether there is just one switch or a large group, there is a complexity limit: If a converter has \(m \) inputs and \(n \) outputs, even the densest possible collection of switches would have a single switch between each input line and each output line. The \(m \times n \) switches in the circuit can be arranged according to their connections. The pattern suggests a matrix, as shown in Fig. 1.10.

Power electronic circuits fall into two broad classes:

1. **Direct switch matrix circuits.** In these circuits, energy storage elements are connected to the matrix only at the input and output terminals. The storage elements effectively become part of the source or load. A rectifier with an external lowpass filter is an example of a direct switch matrix circuit. In the literature, these circuits are sometimes called *matrix converters*.

2. **Indirect switch matrix circuits, also termed embedded converters.** These circuits, like the polarity-reverser example, have energy storage elements connected *within* the matrix structure. There are usually very few storage elements. Indirect switch matrix circuits are most commonly analyzed as a cascade connection of direct switch matrix circuits with the storage in between.

The switch matrices in realistic applications are small. A \(2 \times 2 \) switch matrix, for example, covers all possible cases with a single-port input source and a two-terminal load. The matrix is commonly drawn as the *H*-bridge shown in Fig. 1.11. A more complicated example is the three-phase bridge rectifier shown in Fig. 1.12. There are three possible inputs, and the two terminals of the dc circuit provide outputs, which give a \(3 \times 2 \) switch matrix. In a personal computer power supply, there are commonly five separate dc loads, and the switch matrix is \(2 \times 10 \). Very few practical converters have more than \(\approx 24 \) switches, and most designs use fewer than 12.

A switch matrix provides a way to organize devices for a given application. It also helps to focus the effort into three major task areas. Each of these areas must be addressed.

![The general switch matrix.](image-url)
effectively in order to produce a useful power electronic system.

- The Hardware Task: Build a switch matrix. This involves the selection of appropriate semiconductor switches and the auxiliary elements that drive and protect them.
- The Software Task: Operate the matrix to achieve the desired conversion. All operational decisions are implemented by adjusting switch timing.
- The Interface Task: Add energy storage elements to provide the filters or intermediate storage necessary to meet the application requirements. Unlike most filter applications, lossless filters with simple structures are required.

In a rectifier or other converter, we must choose the electronic parts, how to operate them, and how best to filter the output to satisfy the needs of the load.

1.5.2 Implications of Kirchhoff’s Voltage and Current Laws

A major challenge of switch circuits is their capacity to “violate” circuit laws. Consider first the simple circuits of Fig. 1.13. The circuit of Fig. 1.13a is something we might try for ac-dc conversion. This circuit has problems. Kirchhoff’s voltage law (KVL) tells us that the “sum of voltage drops around a closed loop is zero.” However, with the switch closed, the sum of voltages around the loop is not zero. In reality, this is not a valid result. Instead, a very large current will flow and cause a large $I \times R$ drop in the wires. The KVL will be satisfied by the wire voltage drop, but a fire or, better yet, fuse action, might result. There is, however, nothing that would prevent an operator from trying to close the switch. The KVL, then, implies a crucial restriction: A switch matrix must not attempt to interconnect unequal voltage sources directly. Notice that a wire, or dead short, can be thought of as a voltage source with $V = 0$, so KVL is a generalization for avoiding shorts across an individual voltage source.

A similar constraint holds for Kirchhoff’s current law (KCL). The KCL states that “currents into a node must sum to zero.” When current sources are present in a converter, we must avoid any attempts to violate KCL. In Fig. 1.13b, if the current sources are different and the switch is opened, the sum of the currents into the node will not be zero. In a real circuit, high voltages will build up and cause an arc to create another current path. This situation has real potential for damage, and a fuse will not help. The KCL implies a restriction in which a switch matrix must not attempt to interconnect unequal current sources directly. An open circuit can be thought of as a current source with $I = 0$, so KCL applies to the problem of opening an individual current source.

In contrast to conventional circuits, in which KVL and KCL are automatically satisfied, switches do not “know” KVL or KCL. If a designer forgets to check, and accidentally shorts two voltages or breaks a current source connection, some problem or damage will result. On the other hand, KVL and KCL place necessary constraints on the operating strategy of a switch matrix. In the case of voltage sources, switches must not act to create short-circuit paths among dissimilar sources. In the case of KCL, switches must act to provide a path for currents. These constraints drastically reduce the number of valid switch operating conditions in a switch matrix, and lead to manageable operating design problems.

When energy storage is included, there are interesting implications for the current law restrictions. Figure 1.14 shows two “circuit law problems.” In Fig. 1.14a, the voltage source will cause the inductor current to ramp up indefinitely because $V = L \frac{di}{dt}$. We might consider this to be a “KVL problem,” since the long-term effect is similar to shorting the source. In Fig. 1.14b, the current source will cause the capacitor voltage to ramp toward infinity. This causes a “KCL problem”; eventually, an arc will form to create an additional current path, just as if the current source had been opened. Of course, these connections are not problematic if they are only temporary. However, it should be evident that an inductor will not support dc voltage, and a capacitor will not support dc current. On average over an extended time interval,
1.5.3 Resolving the Hardware Problem: Semiconductor Devices

A switch is either on or off. An ideal switch, when on, will carry any current in any direction. When off, it will never carry current, no matter what voltage is applied. It is entirely lossless, and changes from its on state to its off state instantaneously. A real switch can only approximate an ideal switch. Those aspects of real switches that differ from the ideal include the following:

- limits on the amount and direction of on-state current;
- a nonzero on-state voltage drop (such as a diode forward voltage);
- some level of leakage current when the device is supposed to be off;
- limitations on the voltage that can be applied when off; and
- operating speed. The time of transition between the on and off states can be important.

The degree to which properties of an ideal switch must be met by a real switch depends on the application. For example, a diode can easily be used to conduct dc current; the fact that it conducts only in one direction is often an advantage, not a weakness.

Many different types of semiconductors have been applied in power electronics. In general, these fall into three groups:

- Diodes, which are used in rectifiers, dc-dc converters, and in supporting roles.
- Transistors, which in general are suitable for control of single-polarity circuits. Several types of transistors are applied to power converters. The most recent type, the insulated gate bipolar transistor (IGBT) is unique to power electronics and has good characteristics for applications such as inverters.
- Thyristors, which are multijunction semiconductor devices with latching behavior. Thyristors in general can be switched with short pulses, and then maintain their state until current is removed. They act only as switches. The characteristics are especially well-suited to controllable rectifiers, although thyristors have been applied to all power conversion applications.

Some of the features of the most common power semiconductors are listed in Table 1.1. This table shows a wide variety of speeds and rating levels. As a rule, faster speeds apply to lower ratings. For each device type, cost tends to increase both for faster devices and for devices with higher power-handling capacity.

Conducting direction and blocking behavior are fundamentally tied to the device type, and these basic characteristics constrain the choice of device for a given conversion function. Consider again a diode. It carries current in only one direction and always blocks current in the other. Ideally, the diode exhibits no forward voltage drop or off-state leakage current. Although it lacks all the features of an ideal switch, the ideal diode is an important switching device. Other real devices operate with polarity limits on current and voltage and have corresponding ideal counterparts. It is convenient to define a special type of switch to represent this behavior: the restricted switch.

DEFINITION: A **restricted switch** is an ideal switch with the addition of restrictions on the direction of current.
flow and voltage polarity. The ideal diode is one example of a restricted switch.

The diode always permits current flow in one direction, while blocking flow in the other. It therefore represents a forward-conducting reverse-blocking restricted switch, and operates in one quadrant on a graph of device current vs voltage. This FCRB function is automatic—the two diode terminals provide all the necessary information for switch action. Other restricted switches require a third gate terminal to determine their state. Consider the polarity possibilities given in Table 1.2. Additional functions such as bidirectional-conducting reverse-blocking can be obtained simply by reverse connection of one of the five types in the table.

The quadrant operation shown in the table indicates polarities. For example, the current in a diode will be positive when on and the voltage will be negative when off. This means diode operation is restricted to the single quadrant comprising the upper vertical (current) axis and the left horizontal (voltage) axis. The other combinations appear in the table. Symbols for restricted switches can be built up by interpreting the diode’s triangle as the current-carrying direction and the bar as the blocking direction. The five types can be drawn as in Table 1.2. Although the symbols are used infrequently, they are valuable for showing the polarity behavior of switching devices. A circuit drawn with restricted switches represents an idealized power converter.

Restricted switch concepts guide the selection of devices. For example, consider an inverter intended to deliver ac load current from a dc voltage source. A switch matrix built to perform this function must be able to manipulate ac current and dc voltage. Regardless of the physical arrangement of the matrix, we would expect bidirectional-conducting forward-blocking switches to be useful for this conversion. This is a correct result: Modern inverters operating from dc voltage sources are built with FETs or with IGBTs arranged with reverse-parallel diodes. As new power devices are introduced to the market, it is straightforward to determine what types of converters will use them.

1.5.4 Resolving the Software Problem:

Switching Functions

The physical $m \times n$ switch matrix can be associated with a mathematical $m \times n$ switch state matrix. Each element of this matrix, called a switching function, shows whether the corresponding physical device is on or off.

DEFINITION: A switching function $q(t)$ has a value of unity when the corresponding physical switch is on and 0 when it is off. Switching functions are discrete-valued functions of time, and control of switching devices can be represented with them.

Figure 1.15 shows a typical switching function. It is periodic, with period T, representing the most likely repetitive switch action in a power converter. For convenience, it is drawn on a relative time scale that begins at 0 and draws out the square wave period-by-period. The actual timing is arbitrary, so the center of the first pulse is defined as a specified time t_0 in the figure. In many converters, the switching function is generated as an actual control voltage signal that might drive the gate of either a MOSFET or some other semiconductor switching device.

The timing of switch action is the only alternative for control of a power converter. As switch action can be repre-
sent with a discrete-valued switching function, the timing can be represented within the switching function framework. Based on Fig. 1.15, a generic switching function can be characterized completely with three parameters:

1. The **duty ratio** D is the fraction of time during which the switch is on. For control purposes the pulse width can be adjusted to achieve a desired result. We can term this adjustment process **pulse-width modulation** (PWM), perhaps the most important process for implementing control in power converters.

2. The frequency $f_{\text{switch}} = 1/T$ (with radian frequency $\omega = 2\pi f_{\text{switch}}$) is most often constant, although not in all applications. For control purposes, frequency can be adjusted. This is unusual in power converters because the operating frequencies are often dictated by the application.

3. The time delay t_0 or phase $\phi_0 = \omega t_0$. Rectifiers often make use of **phase control** to provide a range of adjustment. A few specialized ac-ac converter applications use phase modulation.

With just three parameters to vary, there are relatively few possible ways to control any power electronic circuit. The dc-dc converters usually rely on duty ratio adjustment (PWM) to alter their behavior. Phase control is common in controlled rectifier applications. Pulse-width modulation is used formally for many types of inverters.

Switching functions are very powerful tools for general representation of converter action [7]. The most widely used

TABLE 1.2 The types of restricted switches

<table>
<thead>
<tr>
<th>Action</th>
<th>Device</th>
<th>Quadrants</th>
<th>Restricted Switch Symbol</th>
<th>Device Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carries current in one direction, blocks in the other (forward-conducting reverse-blocking)</td>
<td>Diode</td>
<td>![Diode Symbol]</td>
<td>![Diode Symbol]</td>
<td>![Diode Symbol]</td>
</tr>
<tr>
<td>Carries or blocks current in one direction (forward-conducting, forward-blocking)</td>
<td>BJT</td>
<td>![BJT Symbol]</td>
<td>![BJT Symbol]</td>
<td>![BJT Symbol]</td>
</tr>
<tr>
<td>Carries in one direction or blocks in both directions (forward-conducting, bidirectional-blocking)</td>
<td>GTO</td>
<td>![GTO Symbol]</td>
<td>![GTO Symbol]</td>
<td>![GTO Symbol]</td>
</tr>
<tr>
<td>Carries in both directions, but blocks only in one direction (bidirectional-carrying, forward-blocking)</td>
<td>FET</td>
<td>![FET Symbol]</td>
<td>![FET Symbol]</td>
<td>![FET Symbol]</td>
</tr>
<tr>
<td>Fully bidirectional</td>
<td>Ideal switch</td>
<td>![Ideal Switch Symbol]</td>
<td>![Ideal Switch Symbol]</td>
<td>![Ideal Switch Symbol]</td>
</tr>
</tbody>
</table>

FIGURE 1.15 A generic switching function with period T, duty ratio D, and time reference t_0.
control approaches derive from averages of switching functions [2, 8]. Their utility comes from their application in writing circuit equations. For example, in the boost converter of Fig. 1.9, the loop and node equations change depending on which switch is acting at a given moment. The two possible circuit configurations each have distinct equations. Switching functions allow them to be combined. By assigning switching functions \(q_1(t) \) and \(q_2(t) \) to the left and right switching devices, respectively, we obtain

\[
q_1\left(V_{\text{in}} - L \frac{di}{dt} = 0\right), q_1\left(C \frac{dv}{dt} + v_C = 0\right), \text{left switch on}
\]

\[
q_2\left(V_{\text{in}} - L \frac{di}{dt} = v_C\right), q_2\left(C \frac{dv}{dt} + v_C = i_L\right), \text{right switch on}
\]

(1.9)

Because the switches alternate, and the switching functions must be 0 or 1, these sets of equations can be combined to give

\[
V_{\text{in}} - L \frac{di}{dt} = q_2 v_C, \hspace{1em} C \frac{dv}{dt} + \frac{v_C}{R} = q_1 i_L
\]

(1.10)

The combined expressions are simpler and easier to analyze than the original equations.

For control purposes, the average of equations such as (1.10) often proceeds with the replacement of switching functions \(q \) with duty ratios \(d \). The discrete time action of a switching function thus will be represented by an average duty cycle parameter. Switching functions, the advantages gained by averaging, and control approaches such as PWM are discussed at length in several chapters in this handbook.

1.5.5 Resolving the Interface Problem:
Lossless Filter Design

Lossless filters for power electronics applications are sometimes called smoothing filters [9]. In applications in which dc outputs are of interest, such filters are commonly implemented as simple lowpass LC structures. The analysis is facilitated because in most cases the residual output waveform, termed ripple, has a known shape. Filter design for rectifiers or dc-dc converters is a question of choosing storage elements large enough to keep ripple low, but not so large that the whole circuit becomes unwieldy or expensive.

Filter design is more challenging when ac outputs are desired. In some cases, this is again an issue of lowpass filter design. In many applications, lowpass filters are not adequate to meet low noise requirements. In this situation, active filters can be used. In power electronics, the term active filter refers to lossless switching converters that actively inject or remove energy moment-by-moment to compensate for distortion. The circuits (discussed elsewhere in this handbook) are not related to the linear active filter op-amp circuits used in analog signal processing. In ac cases, there is a continuing opportunity for innovation in filter design.

1.6 Summary

Power electronics is the study of electronic circuits for the control and conversion of electrical energy. The technology is a critical part of our energy infrastructure, and supports almost all important electrical applications. For power electronics design, we consider only those circuits and devices that, in principle, introduce no loss and can achieve near-perfect reliability. The two key characteristics of high efficiency and high reliability are implemented with switching circuits, supplemented with energy storage. Switching circuits in turn can be organized as switch matrices. This facilitates their analysis and design.

In a power electronic system, the three primary challenges are the hardware problem of implementing a switching matrix, the software problem of deciding how to operate that matrix, and the interface problem of removing unwanted distortion and providing the user with the desired clean power source. The hardware is implemented with a few special types of power semiconductors. These include several types of transistors, especially MOSFETs and IGBTs, and several types of thyristors, especially SCRs and GTOs. The software problem can be represented in terms of switching functions. The frequency, duty ratio, and phase of the switching functions are available for operational purposes. The interface problem is addressed by means of lossless filter circuits. Most often, these are lossless LC passive filters to smooth out ripple or reduce harmonics. More recently, active filter circuits have been applied to make dynamic corrections in power conversion waveforms.

Improvements in devices and advances in control concepts have led to steady improvements in power electronic circuits and systems. This is driving tremendous expansion of their application. Personal computers, for example, would be unwieldy and inefficient without power electronic dc supplies. Portable communication devices and computers would be impractical. High-performance lighting systems, motor controls, and a wide range of industrial controls depend on power electronics. In the near future, we can expect strong growth in automotive applications, in dc power supplies for communication systems, in portable applications, and in high-end converters for advanced microprocessors. During the next generation, we will reach a time when almost all electrical energy is processed through power electronics somewhere in the path from generation to end use.

References

1 Introduction

2.1 Diode as a Switch

Among all the static switching devices used in power electronics (PE), the power diode is perhaps the simplest. Its circuit symbol, shown in Fig. 2.1, is a two terminal device, and with terminal A known as the anode and terminal K known as the cathode. If terminal A experiences a higher potential compared to terminal K, the device is said to be forward biased and a forward current \(I_F \) will flow through the device in the direction as shown. This causes a small voltage drop across the device (\(<1\) V), which under ideal conditions is usually ignored. By contrast, when a diode is reverse biased, it does not conduct and the diode then experiences a small current flowing in the reverse direction called the leakage current. Both forward voltage drop and leakage current are ignored in an ideal diode. In PE applications a diode is usually considered to be an ideal static switch.

The characteristics of a practical diode depart from the ideals of zero forward and infinite reverse impedance, as shown in Fig. 2.2a. In the forward direction, a potential barrier associated with the distribution of charges in the vicinity of the junction, together with other effects, leads to a voltage drop. In the case of silicon this is in the range of 1 V for currents in the normal range. In the reverse direction, within the normal voltage operating range, a very small current flows that is largely independent of the voltage. For practical purposes the static characteristics are often represented as shown in Fig. 2.2b. In Fig. 2.2b the forward characteristic is expressed as a threshold voltage \(V_O \) with a linear incremental or slope resistance \(r \). The reverse characteristic remains the same over the range of possible leakage currents irrespective of voltage within the normal working range.

2.2 Some Properties of PN Junction

From the forward and reverse-biased condition characteristics, one notices that when the diode is forward biased, current rises rapidly as the voltage is increased. Current in the reverse-biased region is significantly small until the breakdown voltage of the diode is reached. Once the applied voltage is over this limit, the current will increase rapidly to a very high value limited only by an external resistance.

DC Diode parameters. The most important are the following:

- **Forward voltage** \(V_F \) is the voltage drop of a diode across A and K at a defined current level when it is forward biased.
- **Breakdown voltage** \(V_B \) is the voltage drop across the diode at a defined current level when it is beyond reverse-biased level. This is known as avalanche.
- **Reverse current** \(I_R \) is the current at a particular voltage, and which is below the breakdown voltage.
AC Diode parameters. Very common are the following:

- **Forward recovery time** \(t_{FR} \) is the time required for the diode voltage to drop to a particular value after the forward current starts to flow.
- **Reverse recovery time** \(t_{RR} \) is the time interval between the application of reverse voltage and the reverse current dropped to a particular value as shown in Fig. 2.2. Parameter \(t_a \) is the interval between the zero crossing of the diode current and when it becomes \(I_{RR} \). On the other hand, \(t_b \) is the time interval from the maximum reverse recovery current to \(\approx 0.25 \) of \(I_n \). The ratio of the two parameters \(t_a \) and \(t_b \) is known as the softness factor SF. Diodes with abrupt recovery characteristics are used for high-frequency switching. See Fig. 2.3 for soft and abrupt recovery.

In practice, a design engineer frequently needs to calculate reverse recovery time in order to evaluate the possibility of high-frequency switching. As a rule of thumb, the lower \(t_{rr} \) is, the faster the diode can be switched [1].

\[
t_{rr} = t_a + t_b
\]

If \(t_b \) is negligible compared to \(t_a \) (which commonly occurs), then the following expression is valid:

\[
t_{rr} = \frac{2Q_{RR}}{di/dt}
\]

from which the reverse recovery current

\[
I_{rr} = \sqrt{\frac{di}{dt}2Q_{RR}}
\]

where \(Q_{RR} \) is the storage charged, and can be calculated from the area enclosed by the path of the recovery current.

EXAMPLE 2.1 The manufacturer of a selected diode gives the rate of fall of the diode current \(di/dt = 20 \text{ A/µs} \), and a reverse recovery time of \(t_{rr} = 5 \mu \text{s} \). What value of peak reverse current do you expect?

SOLUTION. The peak reverse current is given as:

\[
I_{rr} = \sqrt{\frac{di}{dt}2Q_{RR}}
\]

The storage charge \(Q_{RR} \) is calculated as \(Q_{rr} = \frac{1}{2} \frac{di}{dt} t_{rr}^2 = 1/2 \times 20 \text{ A/µs} \times (5 \times 10^{-6})^2 = 50 \mu \text{C} \). Hence

\[
I_{rr} = \sqrt{\frac{20 \text{ A/µs}}{\mu \text{s}}} \times 2 \times 50 \mu \text{C} = 44.72 \text{ A}
\]
Diode Capacitance \(C_D \) is the net diode capacitance including the junction \((C_J) \) plus package capacitance \((C_P) \).

In high-frequency pulse switching a parameter known as transient thermal resistance is of vital importance because it indicates the instantaneous junction temperature as a function of time under constant input power.

2.3 Common Diode Types

Depending on their applications, diodes can be segregated into the following major divisions:

Small Signal Diode. These are the semiconductor devices used most often in a wide variety of applications. In general purpose applications, they are used as a switch in rectifiers, limiters, capacitors, and in wave shaping. The common diode parameters a designer needs to know include forward voltage, reverse breakdown voltage, reverse leakage current, and recovery time.

Silicon Rectifier Diode. These are the diodes that have high forward-current carrying capability, typically up to several hundred amperes. They usually have a forward resistance of only a fraction of an ohm while their reverse resistance is in the megaohm range. Their primary application is in power conversion, such as for power supplies, UPS, rectifiers/inverters etc. In case of current exceeding the rated value, their case temperature will rise. For stud mounted diodes, their thermal resistance is between 0.1 to 1°C/W.

Zener Diode. Its primary applications are in the voltage reference or regulation. However, its ability to maintain a certain voltage depends on its temperature coefficient and impedance. The voltage reference or regulation application of Zener diodes are based on their avalanche properties. In the reverse-biased mode, at a certain voltage the resistance of these devices may suddenly drop. This occurs at the Zener voltage \(V_Z \), a parameter the designer knows beforehand.

![Diode reverse recovery process with various softness factors.](image)

Figure 2.3 Diode reverse recovery process with various softness factors. (a) Soft recovery; and (b) abrupt recovery.

Photodiode. When a semiconductor junction is exposed to light, photons generate hole-electron pairs. When these charges diffuse across the junction, they produce photo current. Hence this device acts as a source of current that increases with the intensity of light.

Light-Emitting Diode (LED). Power diodes used in PE circuits are high-power versions of the commonly used devices employed in analog and digital circuits. They are manufactured in many varieties and ranges. The current rating can be from a few amperes to several hundreds while the voltage rating varies from tens of volts to several thousand volts.

2.4 Typical Diode Ratings

2.4.1 Voltage Ratings

For power diodes, a data sheet will give two voltage ratings. One is the repetitive peak inverse voltage \((V_{RPM}) \) and the other is the nonrepetitive peak inverse voltage. The nonrepetitive voltage \((V_{RPM}) \) is the diode’s capability to block a reverse voltage that may occur occasionally due to an overvoltage surge. On the other hand, repetitive voltage is applied on the diode in a sustained manner. To understand this, let us look at the circuit in Fig. 2.5a.
EXAMPLE 2.2. Two equal source voltages of 220 V peak and phase-shifted from each other by 180° supply a common load: (a) Show the load voltage; (b) describe when diode D1 will experience \(V_{\text{RRM}} \); and (c) determine the \(V_{\text{RRM}} \) magnitude considering a safety factor of 1.5.

SOLUTION. (a) The input voltages, load voltage, and the voltage across D1 when it is not conducting (\(V_{\text{RRM}} \)) are shown in Fig. 2.5b.

(b) Diode D1 will experience \(V_{\text{RRM}} \) when it is not conducting. This happens when the applied voltage \(V_1 \) across it is in the negative region (from 70 to 80 ms as shown in Fig. 2.5b) and consequently the diode is reverse biased. The actual ideal voltage across it is the peak value of the two input voltages 220 \(\times 2 = 440 \text{ V} \). This is because when \(D1 \) is not conducting, \(D2 \) is. Hence, \(V_{\text{in}} \) and \(V_{\text{bn}} \) is also applied across it because \(D2 \) is practically shorted.

(c) The \(V_{\text{RRM}} = 440 \text{ V} \) is the value under ideal circumstances. In practice, however, higher voltages may occur due to stray circuit inductances and/or transients due to the reverse recovery of the diode. These are hard to estimate. Hence, a design engineer would always use a safety factor to cater to these overvoltages, that is, a diode with a \(220 \times 2 \times 1.5 = 660 \text{ V} \) rating.

2.4.2 Current Ratings

Power diodes are usually mounted on a heat sink. This effectively dissipates the heat arising due to continuous conduction. Current ratings are estimated based on temperature rise considerations. The data sheet of a diode normally specifies three different current ratings. These are: (1) the average current; (2) the rms current; and (3) the peak current. A design engineer must ensure that each of these values are never exceeded. To do that, the actual current (average, rms, and peak) in the circuit must be evaluated either by calculation, simulation, or measurement. These values must be checked against the ones given in the data sheet for that selected diode. The calculated values must be less than or equal to the data sheet values. The following example shows this technique.

EXAMPLE 2.3 The current waveform passing through a diode switch in a switch-mode power-supply application is shown in Fig. 2.6. Find the average, rms and peak currents.

SOLUTION. The current pulse duration is shown to be 0.2 ms within a period of 1 ms and with a peak amplitude of 50 A. Hence the required currents are:

\[
I_{\text{average}} = 50 \times \frac{0.2}{1} = 10 \text{ A}
\]

\[
I_{\text{rms}} = \sqrt{50^2 \times \frac{0.2}{1}} = 22.36 \text{ A}
\]

\[
I_{\text{peak}} = 50 \text{ A}
\]

Sometimes, a surge current rating and its permissible duration are also given in a data sheet. For protection of diodes and other semiconductor devices, a fast acting fuse is required.
These fuses are selected based on their I2t rating, which is normally specified in a data sheet for a selected diode.

2.5 Snubber Circuits for Diode

Snubber circuits are essential for diodes used in switching circuits. It can save a diode from overvoltage spikes, which may arise during the reverse recovery process. A very common snubber circuit for a power diode consists of a capacitor and a resistor connected in parallel with the diode as shown in Fig. 2.7.

When the reverse recovery current decreases, the capacitor by virtue of its property will try to retain the voltage across it, which is approximately the voltage across the diode. The resistor, on the other hand, will help to dissipate some of the energy stored in the inductor, which forms the \(I_r \) loop. The \(\frac{dv}{dt} \) across a diode can be calculated as:

\[
\frac{dv}{dt} = \frac{0.632 \times V_S}{\tau} = \frac{0.632 \times V_S}{R_S \times C_S}
\]

where \(V_S \) is the voltage applied across the diode.

Usually the \(\frac{dv}{dt} \) rating of a diode is given in manufacturer datasheets. By knowing \(\frac{dv}{dt} \) and \(R_S \), one can choose the value of the snubber capacitor \(C_S \). Here \(R_S \) can be calculated from the diode reverse recovery current:

\[
R_S = \frac{V_S}{I_{rr}}
\]

The designed \(\frac{dv}{dt} \) value must always be equal or lower than the \(\frac{dv}{dt} \) value found from the data sheet.

2.6 Series and Parallel Connection of Power Diodes

For specific applications when the voltage or current rating of a chosen diode is not enough to meet the designed rating, diodes can be connected in series or in parallel. Connecting them in series will give the structure a high voltage rating that may be necessary for high-voltage applications [2]. However, one must ensure that the diodes are properly matched, especially in terms of their reverse recovery properties. Otherwise, during reverse recovery there may be large voltage unbalances between the series-connected diodes. Additionally, due to differences in reverse recovery times, some diodes may recover from the phenomenon earlier than the others, thereby causing them to bear the full reverse voltage. All of these problems can effectively be overcome by connecting a bank of a capacitor and a resistor in parallel with each diode as shown in Fig. 2.8.

If a selected diode cannot match the required current rating, one may connect several diodes in parallel. In order to ensure equal current sharing, the designer must choose diodes with the same forward voltage drop properties. It is also important to ensure that the diodes are mounted on similar heat sinks and are cooled (if necessary) equally. This will affect the temperatures of the individual diodes, which in turn may change the diode forward characteristics.

![Series-connected diodes with necessary protection.](image)

FIGURE 2.8 Series-connected diodes with necessary protection.

Tutorial 2.1 Reverse Recovery and Overvoltages

Figure 2.9 shows a simple switch mode power supply. The switch (1-2) is closed at \(t = 0 S \). When the switch is open, a freewheeling current \(I_F = 20 \text{A} \) flows through the load (RL), freewheeling diode (DF), and the large load circuit inductance (LL). The diode reverse recovery current is 20 A and it then...
decays to zero at the rate of 10 A/μS. The load is rated at 10 Ω and the forward on-state voltage drop is neglected.

(a) Draw the current waveform during the reverse recovery (Irr) and find its time (trr).

(b) Calculate the maximum voltage across the diode during this process (Irr).

SOLUTION. (a) A typical current waveform during reverse recovery process is shown in Fig. 2.10 for an ideal diode.

When the switch is closed, the steady-state current is

I_{SS} = 200 V / 10 Ω = 20 A,

because under the steady-state condition the inductor is shorted. When the switch is open, the reverse recovery current flows in the right-hand side loop consisting of LL, RL, and DF. The load inductance LL is assumed to be shorted. Hence, when the switch is closed, the loop equation is [3]:

\[V = L \frac{di_S}{dt} \]

from which \[\frac{di_S}{dt} = \frac{V}{L} = \frac{200}{10} = 20 \text{ A/μS} \]

At the moment the switch is open, the same current keeps flowing in the right-hand side loop. Hence,

\[\frac{di_R}{dt} = -\frac{di_S}{dt} = -20 \text{ A/μS} \]

from time zero to time \(t_1 \), the current will decay at a rate of 20 A/μS and will be zero at \(t_1 = 20/20 = 1 \) μS. The reverse recovery current starts at this point and according to the given condition becomes 20 A at \(t_2 \). From this point on, the rate of change remains unchanged at 20 A/μS. Period \(t_2 - t_1 \) is found:

\[t_2 - t_1 = \frac{20 \text{ A}}{20 \text{ A/μS}} = 1 \text{ μS} \]

From \(t_2 \) to \(t_3 \) the current decays to zero at the rate of 20 A/μS. The required time is

\[t_3 - t_2 = \frac{20 \text{ A}}{10 \text{ A/μS}} = 2 \text{ μS} \]

Hence the actual reverse recovery time: \(t_{rr} = t_3 - t_1 = (1 + 1 + 2) - 1 = 3 \) μS.

(b) The diode experiences the maximum voltage only when the switch is open. This is due to both the source voltage 200 V and the newly formed voltage caused by the change in current through inductor \(L \). The voltage across the diode,

\[V_D = -V + L \frac{di_S}{dt} = -200 + (10 \times 10^{-6})(-20 \times 10^6) = -400 \text{ V} \]

Tutorial 2.2 Ideal Diode Operation, Mathematical Analysis and PSPICE Modelling

This tutorial illustrates the operation of an ideal diode circuit. Most of the power electronic applications operate at a relatively high voltage and, in such cases, the voltage drop across the power diode is usually small. It is quite often justifiable to use the ideal diode model. An ideal diode has a zero conduction drop when it is forward-biased and has zero current when it is reverse-biased. The equations and the analysis presented here are based on an ideal diode model.
Circuit Operation A circuit with a single diode and a very common RL load is shown in Fig. 2.11. The source V_S is an alternating sinusoidal source. Suppose $V_S = E_m \sin(\omega t)$. V_S is positive when $0 < \omega t < \pi$, and is negative when $\pi < \omega t < 2\pi$. When V_S starts to become positive, the diode begins conducting and the positive source keeps the diode in conduction until ωt reaches π radians. At that instant (defined by $\omega t = \pi$ radians), the current through the circuit is not zero and there is some energy stored in the inductor. The voltage across an inductor is positive when the current through it is on the increase and it becomes negative when the current through it tends to fall. When the voltage across the inductor is negative, it is in such a direction as to forward bias the diode. The polarity of voltage across the inductor is as shown in Figs. 2.12 and 2.13.

When V_S changes from a positive to a negative value, there is current through the load at the instant $\omega t = \pi$ radians and the diode continues to conduct until the energy stored in the inductor becomes zero. After that the current tends to flow in the reverse direction and the diode blocks conduction. The entire applied voltage now appears across the diode.

Circuit Analysis The expression for the current through the diode can be obtained from the following mathematical analysis [7]. It is assumed that the current flows for $0 < \omega t < \beta$, where $\beta > \pi$, when the diode conducts, and the driving function for the differential equation is the sinusoidal function defining the source voltage. During the period defined by $\beta < \omega t < 2\pi$, the diode blocks the current and acts as an open switch. For this period, there is no equation defining the behavior of the circuit. For $0 < \omega t < \beta$, Eq. (2.4) applies [7].

\[
L \frac{di}{dt} + R*i = E* \sin(\theta), \quad \text{where} \quad -\pi \leq \theta \leq \beta
\]

(2.4)

\[
L \frac{di}{dt} + R*i = 0
\]

(2.5)

\[
oL \frac{di}{d\theta} + R*i = 0
\]

(2.6)

Assuming a linear differential equation, the solution is found in two parts. The homogeneous equation is defined by Eq. (2.5). It is preferable to express the equation in terms of the angle θ instead of t. As $\theta = \omega t$, then $d\theta = \omega dt$. Then Eq. (2.5) is converted to Eq. (2.6). Equation (2.7) is the solution to this homogeneous equation and is called the complementary integral.

The value of constant A in the complementary solution is to be calculated. The particular solution is the steady-state response and Eq. (2.8) expresses it. The steady-state response is the current that would flow in steady-state in a circuit that contains only the source, the resistor, and the inductor as shown in the circuit in Fig. 2.11, where the only element missing is the diode. This response can be obtained using the differential equation, the Laplace transform, or the ac sinusoidal circuit analysis. The total solution is the sum of both the complementary and the particular solution. It is shown in Eq. (2.9). The value of A is obtained using the initial condition. As the diode starts conducting at $\omega t = 0$ and the current starts building up from zero, $i(0) = 0$. The value of A is expressed by Eq. (2.10).

Once the value of A is found, the expression for current is known. After evaluating A, current can be evaluated at different values of ωt, starting from $\omega t = \pi$. As ωt increases, the current continues to decrease. For some value of ωt, say β, the current would be zero. If $\omega t > \beta$, the current would drop to a negative value. As the diode blocks current in the reverse direction, the diode stops conducting when ωt is reached. Then an expression for the average output voltage can be obtained. Because the average voltage across the inductor has to be zero, the average voltage across the resistor and at the cathode of the diode are the same. This average value can be obtained as shown in Eq. (2.11).

\[
i(\theta) = \frac{E}{Z} \sin(\omega t - \theta)
\]

(2.8)
where \(a = \tan\left(\frac{\omega t}{R}\right) \), and \(Z^2 = R^2 + \omega L \)

\[
i(\theta) = A^*e^{\left(-\frac{R\theta}{i}\right)} + E \cdot \sin(\theta - a)
\]

(2.9)

\[
A = \left(\frac{E}{Z}\right) \sin(a)
\]

(2.10)

Hence, the average output voltage:

\[
V_{OAVG} = \frac{E}{2\pi} \int_{0}^{\beta} \sin \theta \cdot d\theta = \frac{E}{2\pi} \cdot [1 - \cos(\beta)]
\]

(2.11)

PSPICE Modelling: For modelling the ideal diode using PSPICE, the circuit used is shown in Fig. 2.14. Here the nodes are numbered. The ac source is connected between nodes 1 and 0. The diode is connected between nodes 1 and 2 and the inductor links nodes 2 and 3. The resistor is connected from 3 to the reference node, that is, node 0.

The PSPICE program in text form is presented here:

*Half-wave rectifier with RL load
*An exercise to find the diode current
VIN 1 0 sin(0 100 V 50 Hz)
D1 1 2 Dbreak
L1 2 3 10 mH
R1 3 0 5

.MODEL Dbreak D(IS=10N N=1 BV=1200 IBV=10E-3 VJ=0.6)
.TRAN 10 µs 100 µs 60 µs 100 µs

.END

The diode is characterized using the MODEL statement. The TRAN statement controls the transient operation for a period of 100 ms at an interval of 10 ms. The OPTIONS statement sets limits for tolerances. The output can be viewed on the screen because of the PROBE statement. A snapshot of various voltages/currents are presented in Fig. 2.15.

It is evident from Fig. 2.15 that the current lags the source voltage. This is a typical phenomenon in any inductive circuit and is associated with the energy storage property of the inductor. This property of the inductor causes the current to change slowly, governed by the time constant \(\tau = \tan^{-1}(\omega L/R) \). Analytically, this is calculated by the expression in Eq. 2.8.
2.7 Typical Applications of Diodes

A. In rectification. Four diodes can be used to fully rectify an ac signal as shown in Fig. 2.16. Apart from other rectifier circuits, this topology does not require an input transformer. However, transformers are used for isolation and protection. The direction of the current is decided by two diodes conducting at any given time. The direction of the current through the load is always the same. This rectifier topology is known as the bridge rectifier.

The average rectifier output voltage

\[V_{dc} = \frac{2V_m}{\pi} \]

where \(V_m \) is the peak input voltage.

The rms rectifier output voltage

\[V_{rms} = \frac{V_m}{\sqrt{2}} \]

This rectifier is twice as efficient as a single-phase rectifier.

B. For Voltage Clamping. Figure 2.17 shows a voltage clamper. The negative pulse of the input voltage charges the capacitor to its max. value in the direction shown. After charging, the capacitor cannot discharge because it is open circuited by the diode. Hence the output voltage,

\[V_o = V_m + V_i = V_m(1 + \sin(\omega t)) \]

The output voltage is clamped between zero and \(2V_m \).

C. As Voltage Multiplier By connecting diodes in a predetermined manner, an ac signal can be doubled, tripled, and even quadrupled. This is shown in Fig. 2.18. The circuit will yield a dc voltage equal to \(2V_m \). The capacitors are alternately charged to the maximum value of the input voltage.

2.8 Standard Datasheet for Diode Selection

In order for a designer to select a diode switch for specific applications, the following Tables and standard test results can be used. A power diode is chosen primarily based on forward current (\(I_F \)) and the peak inverse (\(V_{RRM} \)) voltage [5]. For example, the designer chose the diode type V30 from Table 2.1 because it closely matches his/her calculated values of \(I_F \) and \(V_{RRM} \) without exceeding those values. However, if for some reason only the \(V_{RRM} \) matches but the calculated value of \(I_F \)
comes in at a higher figure, one should select diode H14, and so on. A similar concept is used for V_{RRM}.

In addition to the forementioned diode parameters, one should also calculate parameters such as the peak forward voltage, reverse recovery time, case and junction temperatures etc. and check them against the datasheet values. Some of these datasheet values are provided in Table 2.2 for the selected diode V_{30}. Figures 2.19–2.21 give the standard experimental relationships between voltages, currents, and power and case temperatures for our selected V_{30} diode. These characteristics help a designer to understand the safe operating range for the diode, and to make a decision as to whether or not a snubber or a heatsink should be used. If one is particularly interested in the actual reverse recovery time measurement, the circuit given in Fig. 2.22 can be constructed and experimented upon.

2.8.1 General-Use Rectifier Diodes

TABLE 2.1 Diode election based on average forward current $I_{F(average)}$ and peak inverse voltage V_{RRM} [4]

<table>
<thead>
<tr>
<th>$I_{F(average)}$</th>
<th>V_{RRM}</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1300</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>V_{30}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1.0</td>
<td>$H14$</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>$V06$</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>$V03$</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>$U05$</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>$U15$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Used with permission. [7].

TABLE 2.2 Details of diode for diode V_{30} selected from Table 2.1

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive Peak reverse Voltage</td>
<td>V_{RRM}</td>
<td>V</td>
<td>800</td>
<td>1000</td>
<td>1300</td>
<td>1500</td>
</tr>
<tr>
<td>Nonrepetitive Peak reverse Voltage</td>
<td>V_{RRM}</td>
<td>V</td>
<td>1000</td>
<td>1300</td>
<td>1600</td>
<td>1800</td>
</tr>
<tr>
<td>Average Forward Current</td>
<td>$I_{F(AV)}$</td>
<td>A</td>
<td>0.4</td>
<td>(Single-phase, half sine wave 180° conduction TL = 100°C, Lead length = 10 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surge (Nonrepetitive) Forward current</td>
<td>I_{FSM}</td>
<td>A</td>
<td>30</td>
<td>(Without PIV, 10 ms conduction, $T_j = 150°C$ start)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I^2t Limit Value</td>
<td>I^2t</td>
<td>A2s</td>
<td>3.6</td>
<td>(Time = 2 ~ 10 ms, 1 = rms value)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>T_j</td>
<td>°C</td>
<td>-50</td>
<td>~ +150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{SM}</td>
<td>°C</td>
<td>-50</td>
<td>~ +150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Lead mounting: lead temperature 300°C max. to 3.2 mm from body for 5 s. max.

* Mechanical strength: bending 90° x 2 cycles or 180° x 1 cycle, Tensile 2 kg, Twist 90° x 1 cycle.

TABLE 2.3 Characteristics ($T_L = 25°C$)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbols</th>
<th>Units</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Reverse Current</td>
<td>$I_{F(average)}$</td>
<td>µA</td>
<td>0.6</td>
<td>10</td>
<td>All class Rated V_{RRM}</td>
<td></td>
</tr>
<tr>
<td>Peak Forward Voltage</td>
<td>$V_{F(average)}$</td>
<td>V</td>
<td>1.3</td>
<td></td>
<td>single-phase, half sine wave</td>
<td></td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>µs</td>
<td>3.0</td>
<td></td>
<td>$I_f = 22 mA, V_f = -15 V$</td>
<td></td>
</tr>
<tr>
<td>Steady-State Thermal Impedance</td>
<td>$R_{th(j-a)}$</td>
<td>°C/W</td>
<td>-</td>
<td>80</td>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>length=10 mm</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 2.19 Variation of peak forward voltage drop with peak forward current.

FIGURE 2.20 Variation of maximum forward power dissipation with average forward current.
FIGURE 2.21 Maximum allowable case temperature with variation of average forward current.

FIGURE 2.22 Reverse recovery time (t_{rr}) measurement.

References
Thyristors are usually three-terminal devices with four layers of alternating p- and n-type material (i.e. three p-n junctions) in their main power handling section. In contrast to the linear relation that exists between load and control currents in a transistor, the thyristor is bistable. The control terminal of the thyristor, called the gate (G) electrode, may be connected to an integrated and complex structure as part of the device. The other two terminals, anode (A) and cathode (K), handle the large applied potentials (often of both polarities) and conduct the major current through the thyristor. The anode and cathode terminals are connected in series with the load to which power is to be controlled.

Thyristors are used to approximate ideal closed (no voltage drop between anode and cathode) or open (no anode current flow) switches for control of power flow in a circuit. This differs from low-level digital switching circuits that are designed to deliver two distinct small voltage levels while conducting small currents (ideally zero). Power electronic circuits must have the capability of delivering large currents and be able to withstand large externally applied voltages. All thyristor types are controllable in switching from a forward-blocking state (positive potential applied to the anode with respect to the cathode with correspondingly little anode current flow) into a forward-conduction state (large forward anode current flowing with a small anode-cathode potential drop). After switching from a forward-blocking state into the forward-conduction state, most thyristors have the characteristic that the gate signal can be removed and the thyristor will remain in its forward-conduction mode. This property, termed “latching,” is an important distinction between thyristors and other types of power electronic devices. Some thyristors are also controllable in switching from forward-conduction back to a forward-blocking state. The particular design of a thyristor will determine its controllability and often its application.

Thyristors are typically used at the highest energy levels in power conditioning circuits because they are designed to handle the largest currents and voltages of any device technology (systems with voltages approximately greater than 1 kV or currents higher than 100 A). Many medium-power circuits (systems operating at <1 kV or 100 A) and particularly low-power circuits (systems operating <100 V or several amperes)
generally make use of power bipolar transistors, power MOSFETs, or insulated gate bipolar transistors (IGBTs) as the main switching elements because of the relative ease in controlling them. The IGBT technology, however, continues to improve and multiple silicon die are commonly packaged together in a module. These modules are now replacing thyristors in 1–3 kV applications because of easier gate-drive requirements. Power diodes are used throughout all levels of power conditioning circuits and systems for component protection and wave-shaping.

A thyristor used in some ac power circuits (50 or 60 Hz in commercial utilities or 400 Hz in aircraft) to control ac power flow can be made to optimize internal power loss at the expense of switching speed. These thyristors are called phase-control devices because they are generally turned from a forward-blocking into a forward-conducting state at some specified phase angle of the applied sinusoidal anode-cathode voltage waveform. A second class of thyristors is used in association with dc sources or in converting ac power at one amplitude and frequency into ac power at another amplitude and frequency, and must generally switch on and off relatively quickly. A typical application for this second class of thyristors is that of converting a dc voltage or current into an ac voltage or current. A circuit that performs this operation is often called an inverter, and the associated thyristors used are referred to as inverter thyristors.

There are four major types of thyristors: i) silicon-controlled rectifier (SCR); ii) gate turn-off thyristor (GTO); iii) MOS-controlled thyristor (MCT) and its various forms; and iv) static induction thyristor (SITH). The MCTs are so-named because many parallel enhancement-mode MOSFET structures of one charge type are integrated into the thyristor for turn-on and many more MOSFETs of the other charge type are integrated into the thyristor for turn-off. These MCTs are currently limited to operation at medium power levels. Other types of integrated MOS-thyristor structures can be operated at high power levels, but these devices are not commonly available or are produced for specific applications. A static induction thyristor (SITH), or field-controlled thyristor (FCTH), has essentially the same construction as a power diode with a gate structure that can pinch-off anode current flow. High-power SITHs have a subsurface gate (buried-gate) structure to allow larger cathode areas to be utilized, and hence larger current densities are possible. The advantage of using MCTs, derivative forms of the MCT, or SITHs is that they are essentially voltage-controlled devices, (e.g., little control current is required for turn-on or turn-off) and, therefore, require simplified control circuits attached to the gate electrode. Detailed discussion of variations of MCTs and SITHs as well as additional references on these devices are discussed by Hudgins [1]. Less important types of thyristors include the Triac (a pair of antiparallel SCRs integrated together to form a bidirectional current switch) and the programmable unijunction transistor (PUT).

Both SCRs and GTOs are designed to operate at all power levels. These devices are primarily controlled using electrical signals (current), although some types are made to be controlled using optical (photons) energy for turn-on. Subclasses of SCRs and GTOs are reverse conducting types and symmetric structures that block applied potentials in the reverse and forward polarities. Other variations of GTOs are the gate-commutated turn-off thyristor (GCT) and the bi-directional controlled thyristor (BCT). Most power converter circuits that incorporate thyristors make use of either SCRs or GTOs, and hence this chapter will focus on these two devices, although the basics of operation are applicable to all thyristor types.

All power electronic devices must be derated (e.g., power dissipation levels, current conduction, voltage blocking, and switching frequency must be reduced) when operating above room temperature (defined as $\approx 25 \, ^{\circ}C$). Bipolar-type devices have thermal runaway problems, in that if allowed to conduct unlimited current, these devices will heat up internally, causing more current to flow, thus generating more heat, and so forth until destruction. Devices that exhibit this behavior are pin diodes, bipolar transistors, and thyristors.

Almost all power semiconductor devices are made from silicon (Si), but some limited commercial devices are available using gallium-arsenide (GaAs), and silicon-carbide SiC. The latter two semiconductor material systems will not be directly discussed because of the lack of availability and usage. The physical description and general behavior of thyristors are unimportant to the semiconductor material system used although the discussion and any numbers cited in the chapter will be associated with Si devices.

3.2 Basic Structure and Operation

Figure 3.1 shows a conceptual view of a typical thyristor with the three $p-n$ junctions and the external electrodes labeled. Also shown in the figure is the thyristor circuit symbol used in electrical schematics.

![Thyristor Circuit Symbol](image)

FIGURE 3.1 Simple cross section of a typical thyristor and the associated electrical schematic symbols.
A high-resistivity region, \(n \)-base, is present in all thyristors. It is this region, the \(n \)-base and associated junction \(J_n \) of Fig. 3.1, which must support the large applied forward voltages that occur when the switch is in its off- or forward-blocking state (nonconducting). The \(n \)-base is typically doped with impurity phosphorus atoms at a concentration of \(\approx 10^{14} \text{ cm}^{-3} \). The \(n \)-base can be 10s to 100s of \(\mu \text{m} \) thick to support large voltages. High-voltage thyristors are generally made by diffusing aluminum or gallium into both surfaces to obtain deep junctions with the \(n \)-base. The doping profile of the \(p \)-regions ranges from about \(10^{15} \) to \(10^{17} \text{ cm}^{-3} \). These \(p \)-regions can be up to 10s of \(\mu \text{m} \) thick. The cathode region (typically only a few \(\mu \text{m} \) thick) is formed by using phosphorus atoms at a doping density of \(10^{17} \) to \(10^{18} \text{ cm}^{-3} \).

The higher the forward-blocking voltage rating of the thyristor, the thicker the \(n \)-base region must be. However increasing the thickness of this high-resistivity region, results in slower turn-on and turn-off (i.e., longer switching times and/or lower frequency of switching cycles because of more stored charge during conduction). For example, a device rated for a forward-blocking voltage of 1kV will, by its physical construction, switch much more slowly than one rated for 100V. In addition, the thicker high-resistivity region of the 1kV device will cause a larger forward voltage drop during conduction than the 100V device carrying the same current. Impurity atoms, such as platinum or gold, or electron irradiation are used to create charge-carrier recombination sites in the thyristor. The large number of recombination sites reduces the mean carrier lifetime (average time that an electron or hole moves through the Si before recombining with its opposite charge-carrier type). A reduced carrier lifetime shortens the switching times (in particular the turn-off or recovery time) at the expense of increasing the forward conduction drop. There are other effects associated with the relative thickness and layout of the various regions that make up modern thyristors, but the major trade-off between forward-blocking voltage rating and switching times, and between forward-blocking voltage rating and forward-voltage drop during conduction should be kept in mind. In signal-level electronics the analogous trade-off appears as a lowering of amplification (gain) to achieve higher operating frequencies, and is often referred to as the gain-bandwidth product.

The operation of thyristors is as follows. When a positive voltage is applied to the anode (with respect to a cathode), the thyristor is in its forward-blocking state. The center junction \(J_2 \) (see Fig. 3.1) is reverse-biased. In this operating mode the gate current is held to zero (open-circuit). In practice, the gate electrode is biased to a small negative voltage (with respect to the cathode) to reverse-bias the GK-junction \(J_g \) and prevent charge-carriers from being injected into the \(p \)-base. In this condition only thermally generated leakage current flows through the device and can often be approximated as zero in value (the actual value of the leakage current is typically many orders of magnitude lower than the conducted current in the on-state). As long as the forward applied voltage does not exceed the value necessary to cause excessive carrier multiplication in the depletion region around \(J_2 \) (avalanche breakdown), the thyristor remains in an off-state (forward-blocking). If the applied voltage exceeds the maximum forward blocking voltage of the thyristor, it will switch to its on-state. However, this mode of turn-on causes nonuniformity in the current flow, is generally destructive, and should be avoided.

When a positive gate current is injected into the device \(J_g \) becomes forward-biased and electrons are injected from the \(n \)-emitter into the \(p \)-base. Some of these electrons diffuse across the \(p \)-base and are collected in the \(n \)-base. This collected charge causes a change in the bias condition of \(J_1 \). The change in bias of \(J_1 \) causes holes to be injected from the \(p \)-emitter into the \(n \)-base. These holes diffuse across the \(n \)-base and are collected in the \(p \)-base. The addition of these collected holes in the \(p \)-base acts the same as gate current. The entire process is regenerative and will cause the increase in charge carriers until \(J_2 \) also becomes forward biased and the thyristor is latched in its on-state (forward-conduction). The regenerative action will take place as long as the gate current is applied in sufficient amount and for a sufficient length of time. This mode of turn-on is considered to be the desired one as it is controlled by the gate signal.

This switching behavior can also be explained in terms of the two-transistor analog shown in Fig. 3.2. The two transistors are regeneratively coupled so that if the sum of their forward current gains (\(z \)'s) exceeds unity, each drives the other into saturation. Equation 3.1 describes the condition necessary for the thyristor to move from a forward-blocking state into the forward-conduction state. The forward current gain (expressed as the ratio of collector current to emitter current) of the \(pnp \) transistor is denoted by \(z_p \), and that of the \(npn \) as \(z_n \). The \(z \)'s are current dependent and increase slightly as the current increases. The center junction \(J_2 \) is reverse-biased under forward applied voltage (positive \(v_{AK} \)). The associated electric field in the depletion region around the junction can
result in significant carrier multiplication, denoted as a multiplying factor M on the current components I_a and i_G.

$$i_A = \frac{M I_a + M z_n i_G}{1 - M (z_n + z_p)} \quad (3.1)$$

In the forward-blocking state, the leakage current I_a is small, both z's are small, and their sum is $< \text{unity}$. Gate current increases the current in both transistors, increasing their z's. Collector current in the nnp transistor acts as base current for the pnp, and analogously, the collector current of the pnp acts as base current driving the nnp transistor. When the sum of the two z's equals unity, the thyristor switches to its on-state (latches). This condition can also be reached, without any gate current, by increasing the forward applied voltage so that carrier multiplication ($M \gg 1$) at J_2 increases the internal leakage current, thus increasing the two z's. A third way to increase the z's is by increasing the device (junction) temperature. Increasing the temperature causes a corresponding increase in the leakage current I_a to the point where latching can occur. The typical manifestation of this temperature dependence is an effective lowering of the maximum blocking voltage that can be sustained by the thyristor.

Another way to cause a thyristor to switch from forward-blocking to forward-conduction exists. Under a forward-applied voltage, J_2 is reverse-biased while the other two junctions are forward-biased in the blocking mode. The reverse-biased junction of J_2 is the dominant capacitance of the three and determines the displacement current that flows. If the rate of increase in the applied V_{AK} is sufficient (dv_{AK}/dt), it will cause a significant displacement current through the J_2 capacitance. This displacement current can initiate switching similar to that of an externally applied gate current. This dynamic phenomenon is inherent in all thyristors and causes there to be a limit (dv/dt) to the time rate of applied V_{AK} that can be placed on the device to avoid uncontrolled switching. Alterations to the basic thyristor structure can be produced that increase the dv/dt limit and will be discussed in Section 3.4.

Once the thyristor has moved into forward conduction, any applied gate current is superfluous. The thyristor is latched, and for SCRs, cannot be returned to a blocking mode by using the gate terminal. Anode current must be commutated away from the SCR for a sufficient time to allow stored charge in the device to recombine. Only after this recovery time has occurred can a forward voltage be reapplied (below the dv/dt limit of course) and the SCR again be operated in a forward-blocking mode. If the forward voltage is reapplied before sufficient recovery time has elapsed, the SCR will move back into forward-conduction. For GTOs, a large applied reverse gate current (typically in the range of 10–50% of the anode current) applied for a sufficient time can remove enough charge near the GK junction to cause it to turn off, thus interrupting base current to the pnp transistor and causing thyristor turn-off. This is similar in principle to using negative base current to quickly turn off a traditional transistor.

3.3 Static Characteristics

3.3.1 Current-Voltage Curves for Thyristors

A plot of the anode current (i_A) as a function of anode-cathode voltage (V_{AK}) is shown in Fig. 3.3. The forward-blocking mode is shown as the low-current portion of the graph (solid curve around operating point “1”). With zero gate current and positive V_{AK}, the forward characteristic in the off- or blocking-state is determined by the center junction J_2, which is reverse-biased. At operating point “1,” very little current flows (I_{A0} only) through the device. However, if the applied voltage exceeds the forward-blocking voltage, the thyristor switches to its on- or conducting-state (shown as operating point “2”) because of carrier multiplication (M in Eq. 1). The effect of gate current is to lower the blocking voltage at which switching takes place. The thyristor moves rapidly along the negatively sloped portion of the curve until it reaches a stable operating point determined by the external circuit (point “2”). The portion of the graph indicating forward conduction shows the large values of i_A that may be conducted at relatively low values of V_{AK} similar to a power diode.

As the thyristor moves from forward-blocking to forward-conduction, the external circuit must allow sufficient anode current to flow to keep the device latched. The minimum anode current that will cause the device to remain in forward-conduction as it switches from forward-blocking is called the

![FIGURE 3.3 Static characteristic i-v curve typical of thyristors.](image-url)
latching current I_L. If the thyristor is already in forward-conduction and the anode current is reduced, the device can move its operating mode from forward-conduction back to forward-blocking. The minimum value of anode current necessary to keep the device in forward-conduction after it has been operating at a high anode current value is called the holding current I_{th}. The holding current value is lower than the latching current value as indicated in Fig. 3.3.

The reverse thyristor characteristic, quadrant III of Fig. 3.3, is determined by the outer two junctions (J_1 and J_2), which are reverse-biased in this operating mode (applied V_{AK} is negative). Symmetric thyristors are designed so that J_1 will reach reverse breakdown due to carrier multiplication at an applied reverse potential near the forward breakdown value (operating point “3” in Fig. 3.3). The forward- and reverse-blocking junctions are usually fabricated at the same time with a very long diffusion process (10 to 50 h) at high temperatures (>1200 °C). This process produces symmetric blocking properties. Wafer-edge termination processing causes the forward-blocking capability to be reduced to $\approx 90\%$ of the reverse-blocking capability. Edge termination is discussed in what follows. Asymmetric devices are made to optimize forward-conduction and turn-off properties, and as such reach reverse breakdown at much lower voltages than those applied in the forward direction. This is accomplished by designing the asymmetric thyristor with a much thinner n-base than is used in symmetric structures. The thin n-base leads to improved properties such as lower forward drop and shorter switching times. Asymmetric devices are generally used in applications when only forward voltages (positive V_{AK}) are to be applied (including many inverter designs).

The form of the gate-to-cathode VI characteristic of SCRs and GTOs is similar to that of a diode. With positive gate bias, the gate-cathode junction is forward-biased and permits the flow of a large current in the presence of a low voltage drop. When negative gate voltage is applied to an SCR, the gate-cathode junction is reverse-biased and prevents the flow of current until avalanche breakdown voltage is reached. In a GTO, a negative gate voltage is applied to provide a low impedance path for anode current to flow out of the device instead of out of the cathode. In this way the cathode region (base-emitter junction of the equivalent n-p-n transistor) turns off, thus pulling the equivalent n-p-n transistor out of conduction. This causes the entire thyristor to return to its blocking state. The problem with the GTO is that the gate-drive circuitry is typically required to sink $\approx 10\%$ of the anode current in order to achieve turn-off.

3.3.2 Edge and Surface Terminations

Thyristors are often made with planar diffusion technology to create the anode region. Formation of these regions creates cylindrical curvature of the metallurgical gate-cathode junction. Under reverse bias, the curvature of the associated depletion region results in electric field crowding along the curved section of the p^+-diffused region. The field crowding seriously reduces the breakdown potential below that expected for the bulk semiconductor. A floating field ring, an extra p^+-diffused region with no electrical connection at the surface, is often added to modify the electric field profile and thus reduce it to a value below or at the field strength in the bulk. An illustration of a single floating field ring is shown in Fig. 3.4. The spacing W between the main anode region and the field ring is critical. Multiple rings can also be employed to further modify the electric field in high-voltage rated thyristors.

Another common method for altering the electric field at the surface is to use a field plate as shown in cross section in Fig. 3.5. By forcing the potential over the oxide to be the same as at the surface of the p^+-region, the depletion region can be extended so that the electric field intensity is reduced near the curved portion of the diffused p^+-region. A common practice is to use field plates with floating field rings to obtain optimum breakdown performance. High-voltage thyristors are made from single wafers of Si and must have edge terminations other than floating field rings or field plates to promote bulk breakdown and limit

![FIGURE 3.4](image1)

Cross section showing a floating field ring to decrease the electric field intensity near the curved portion of the main anode region (leftmost p^+-region).

![FIGURE 3.5](image2)

Cross section showing a field plate used to reduce the electric field intensity near the curved portion of the p^+-region (anode).
leakage current at the surface. Controlled bevel angles can be created using lapping and polishing techniques during production of large-area thyristors. Two types of bevel junctions can be created: i) a positive bevel defined as one in which the junction area decreases when moving from the highly doped to the lightly doped side of the depletion region; and ii) a negative bevel defined as one in which the junction area increases when moving from the highly doped to the lightly doped side of the depletion region. In practice, the negative bevel must be lapped at an extremely shallow angle to reduce the surface field below the field intensity in the bulk. All positive bevel angles between 0 and 90° result in a lower surface field than in the bulk. Figure 3.6 shows the use of a positive bevel for the J₁ junction and a shallow negative bevel for the J₂ and J₃ junctions on a thyristor cross section to make maximum use of the Si area for conduction and still reduce the surface electric field. Further details of the use of beveling, field plates, and field rings can be found in Ghandi [2] and Baliga [3].

3.3.3 Packaging

Thyristors are available in a wide variety of packages, from small plastic ones for low-power (i.e., TO-247), to stud-mount packages for medium-power, to press-pack (also called flat-pack) for the highest power devices. The press-packs must be mounted under pressure to obtain proper electrical and thermal contact between the device and the external metal electrodes. Special force-calibrated clamps are made for this purpose. Large-area thyristors cannot be directly attached to the large copper pole-piece of the press-pack because of the difference in the coefficient of thermal expansion (CTE), hence the use of a pressure contact for both anode and cathode.

Many medium-power thyristors are appearing in modules where a half- or full-bridge (and associated anti-parallel diodes) is put together in one package.

A power module package should have five characteristics:

i) electrical isolation of the baseplate from the semiconductor;

ii) good thermal performance;

iii) good electrical performance;

iv) long life/high reliability; and

v) low cost.

Electrical isolation of the baseplate from the semiconductor is necessary in order to contain both halves of a phase leg in one package as well as for convenience (modules switching to different phases can be mounted on one heat sink) and safety (heat sinks can be held at ground potential).

Thermal performance is measured by the maximum temperature rise in the Si die at a given power dissipation level with a fixed heat sink temperature. The lower the die temperature, the better the package. A package with a low thermal resistance from junction-to-sink can operate at higher power densities for the same temperature rise or lower temperatures for the same power dissipation than a more thermally resistive package. While maintaining low device temperature is generally preferable, temperature variation affects majority carrier and bipolar devices differently. Roughly speaking, in a bipolar device such as a thyristor, switching losses increase and conduction losses decrease with increasing temperature. In a majority carrier device, conduction losses increase with increasing temperature. The thermal conductivity of typical materials used in thyristor packages is shown in Table 3.1.

Electrical performance refers primarily to the stray inductance in series with the die, as well as the capability of mounting a low-inductance bus to the terminals. Another problem is the minimization of capacitive crosstalk from one switch to another, which can cause an abnormal on-state condition by charging the gate of an off-state switch, or from a switch to any circuitry in the package — as would be found in a hybrid power module. Capacitive coupling is a major cause of electromagnetic interference (EMI). As the stray inductance of the module and the bus sets a minimum switching loss for the device because the switch must absorb the stored inductive energy, it is very important to minimize

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Conductivity (W/m·K) at 300 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>150</td>
</tr>
<tr>
<td>Copper (baseplate and pole pieces)</td>
<td>390–400</td>
</tr>
<tr>
<td>AlN substrate</td>
<td>170</td>
</tr>
<tr>
<td>Al₂O₃ (Alumina)</td>
<td>28</td>
</tr>
<tr>
<td>Aluminum (Al)</td>
<td>220</td>
</tr>
<tr>
<td>Tungsten (W)</td>
<td>167</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>138</td>
</tr>
<tr>
<td>Metal matrix composites (MMC)</td>
<td>170</td>
</tr>
<tr>
<td>Thermal grease (heatsink compound)</td>
<td>0.75</td>
</tr>
<tr>
<td>60/40 Solder (Pb/Sn eutectic)</td>
<td>50</td>
</tr>
<tr>
<td>95/5 Solder (Pb/Sn high temperature)</td>
<td>35</td>
</tr>
</tbody>
</table>
inductance within the module. Reducing the parasitic inductance reduces the high-frequency ringing during transients that is another cause of radiated electromagnetic interference, as since stray inductance can cause large peak voltages during switching transients, minimizing it helps to maintain the device within its safe operating area.

Long life and high reliability are primarily attained through minimization of thermal cycling, minimization of ambient temperature, and proper design of the transistor stack. Thermal cycling fatigues material interfaces because of coefficient of thermal expansion (CTE) mismatch between dissimilar materials. As the materials undergo temperature variation, they expand and contract at different rates, which stresses the interface between the layers and can cause interface deterioration (e.g., cracking of solder layers or wire debonding). Chemical degradation processes such as dendrite growth and impurity migration are accelerated with increasing temperature, so keeping the absolute temperature of the device low and minimizing the temperature changes to which it is subject are important. Typical CTE values for common package materials are given in Table 3.2.

Low cost is achieved in a variety of ways. Both manufacturing and material costs must be taken into account when designing a power module. Materials that are difficult to machine or form, even if they are relatively cheap in raw form, molybdenum, for example, should be avoided. Manufacturing processes that lower yield also drive up costs. In addition, a part that is very reliable can reduce future costs by reducing the need for repair and replacement.

The basic half-bridge module has three power terminals: plus, minus, and phase. Advanced modules differ from traditional high-power commercial modules in several ways. The baseplate is metallized aluminum nitride (AIN) ceramic rather than the typical 0.25"-thick, nickel-plated copper baseplate with a soldered metallized ceramic substrate for electrical isolation. This AIN baseplate stack provides a low thermal resistance from die to heat sink. The copper terminal power buses are attached by solder to the devices in a wirebond-free, low-inductance, low-resistance, device-interconnect configuration. The balance of the assembly is typical for module manufacturing with attachment of shells, use of dielectric gels, and with hard epoxies and adhesives to seal the finished module. An example of an advanced module is shown in Fig. 3.7. Details of the thermal performance of modules and advanced modules can be found in Beker et al. [4] and Godbold et al. [5].

3.4 Dynamic Switching Characteristics

The time rate of rise of both anode current (di/dt) during turn-on and anode-cathode voltage (dv/dt) during turn-off is an important parameter to control for ensuring proper and reliable operation. All thyristors have maximum limits for di/dt and dv/dt that must not be exceeded. Devices capable of conducting large currents in the on-state are necessarily made with large-surface areas through which the current flows. During turn-on, localized areas (near the gate region) of a device begin to conduct current. The initial turn-on of an SCR is shown in Fig. 3.8. The cross section illustrates how injected gate current flows to the nearest cathode region, causing this portion of the npn transistor to begin conducting. The pnp transistor then follows the npn into conduction such that
anode current begins flowing only in a small portion of the cathode region. If the local current density becomes too large (in excess of several thousand amperes per square centimeter), then self-heating will damage the device. Sufficient time (referred to as plasma spreading time) must be allowed for the entire cathode area to begin conducting before the localized currents become too high. This phenomenon results in a maximum allowable rate of rise of anode current in a thyristor and is referred to as a \(\frac{di}{dt} \) limit. In many high-frequency applications, the entire cathode region is never fully in conduction. Prevention of \(\frac{di}{dt} \) failure can be accomplished if the rate of increase of the conduction area exceeds the \(\frac{di}{dt} \) rate such that the internal junction temperature does not exceed a specified critical temperature (typically \(\approx 350 \, ^\circ C \)). This critical temperature decreases as the blocking voltage increases. Adding series inductance to the thyristor to limit \(\frac{di}{dt} \) below its maximum usually causes circuit design problems.

Another way to increase the \(\frac{di}{dt} \) rating of a device is to increase the amount of gate-cathode periphery. Inverter SCRs (so named because of their use in high-frequency power converter circuits that convert dc to ac—invert) are designed so that there is a large amount of gate edge adjacent to a significant amount of cathode edge. A top surface view of two typical gate-cathode patterns, found in large thyristors is shown in Fig. 3.9. An inverter SCR often has a stated maximum \(\frac{di}{dt} \) limit of \(\approx 2000 \, \text{A/\mu s} \). This value has been shown to be conservative [6], and by using excessive gate current under certain operating conditions, an inverter SCR can be operated reliably at 10,000 to 20,000 A/\mu s.

A GTO takes the interdigitation of the gate and cathode to the extreme (Fig. 3.9, left). In Fig. 3.10 a cross section of a GTO shows the amount of interdigitation. A GTO often has cathode islands that are formed by etching the Si. A metal plate can be placed on the top to connect the individual cathodes into a large arrangement of electrically parallel cathodes. The gate metallization is placed so that the gate surrounding each cathode is electrically in parallel as well. This construction not only allows high \(\frac{di}{dt} \) values to be reached, as in an inverter SCR, but also provides the capability to turn off the anode current by shunting it away from the individual cathodes and out the gate electrode upon reverse-biasing of the gate. During turn-off, current is decreasing while voltage across the device is increasing. If the forward voltage becomes too high while sufficient current is still flowing, then the device will drop back into its conduction mode instead of
completing its turn-off cycle. Also, during turn-off, the power dissipation can become excessive if the current and voltage are simultaneously too large. Both of these turn-off problems can damage the device as well as other portions of the circuit.

Another switching problem that occurs is associated primarily with thyristors, although other power electronic devices suffer some degradation of performance from the same problem. This problem occurs because thyristors can self-trigger into a forward-conduction mode from a forward-blocking mode if the rate of rise of forward anode-cathode voltage is too large. This triggering method is due to displacement current through the associated junction capacitances (capacitance at J_2 dominates because it is reverse-biased under forward applied voltage). The displacement current contributes to the leakage current I_{leak}, shown in Eq. (1). Therefore SCRs and GTOs have a maximum dv/dt rating that should not be exceeded (typical values are 100 to 1000 V/μs). Switching into a reverse-conducting state from a reverse-blocking state due to an applied reverse dv/dt, is not possible because the values of the reverse z's of the equivalent transistors can never be made large enough to cause the necessary feedback (latching) effect. An external capacitor is often placed between the anode and cathode of the thyristor to help control the dv/dt experienced. Capacitors and other components that are used to form such protection circuits, known as snubbers, are used with all power semiconductor devices.

3.4.1 Cathode Shorts

As the temperature in the thyristor increases >25 °C, the minority carrier lifetime and the corresponding diffusion lengths in the n- and p-bases increase. This leads to an increase in the z's of the equivalent transistors. Discussion of the details of the minority carrier diffusion length and its role in determining the current gain factor z can be found in Sze [7]. Referring to Eq. (1), it is seen that a lower applied bias will give a carrier multiplication factor M, sufficient to switch the device from forward-blocking into conduction because of this increase of the z's with increasing temperature. Placing a shunt resistor in parallel with the base-emitter junction of the equivalent nnp transistor (shown in Fig. 3.11) will result in an effective current gain α_{neff} that is lower than α_n, as given by Eq. (2), where v_{GK} is the applied gate-cathode voltage, R_s is the equivalent lumped value for the distributed current shunting structure, and the remaining factors form the appropriate current factor based on the applied bias and characteristics of the gate-cathode junction. The shunt current path is implemented by providing intermittent shorts, called cathode shorts, between the p-base (gate) region and the n^+-emitter (cathode) region in the thyristor as illustrated in Fig. 3.12. The lumped shunt resistance value is in the range of 1 to 15 Ω as measured from gate to cathode.

$$\alpha_{neff} = \alpha_n \left(\frac{1}{1 + v_{GK}z_n/R_s} \right)$$ \hspace{1cm} (3.2)

Low values of anode current (e.g., those associated with an increase in temperature under forward-blocking conditions) will flow through the shunt path to the cathode contact, bypassing the n^+-emitter and keeping the device out of its forward-conduction mode. As the anode current becomes large, the potential drop across the shunt resistance will be sufficient to forward bias the gate-cathode junction J_3 and bring the thyristor into forward conduction. The cathode shorts also provide a path for displacement current to flow without forward biasing J_3. Both the dv/dt rating of the thyristor and the forward blocking characteristics are improved by using cathode shorts. However, the shorts do, cause a lowering of cathode current handling capability because of the loss of some of the cathode area (n^+-region) to the shorting pattern, an increase in the necessary gate current to obtain switching from forward-blocking to forward-conduction, and an increased complexity in manufacturing the thyristor. The loss of cathode area due to the shorting structure is from 5 to 20%, depending on the type of thyristor. By careful design of the cathode short windows to the p-base, the holding current can be made lower than the latching current. This is important.
so that the thyristor will remain in forward conduction when used with varying load impedances.

3.4.2 Anode Shorts

A further increase in forward-blocking capability can be obtained by introducing anode shorts (reduces Z_p in a similar manner that cathode shorts reduce Z_n) along with the cathode shorts. An illustration of this is provided in Fig. 3.13. In this structure, both J_1 and J_3 are shorted (anode and cathode shorts) so that the forward-blocking capability of the thyristor is completely determined by the avalanche breakdown characteristics of J_2. Anode shorts will result in the complete loss of reverse-blocking capability and is only for thyristors used in asymmetric circuit applications.

3.4.3 Amplifying Gate

The cathode-shorting structure will reduce the gate sensitivity dramatically. To increase this sensitivity and yet retain the benefits of the cathode-shorts, a structure called an amplifying gate (or regenerative gate) is used, as shown in Fig. 3.14 (and Fig. 3.9, right). When the gate current (1) is injected into the p-base through the pilot-gate contact, electrons are injected into the p-base by the n^+-emitter with a given emitter injection efficiency. These electrons traverse through the p-base (time taken for this process is called the transit time) and accumulate near the depletion region. This negative charge accumulation leads to injection of holes from the anode. The device then turns-on after a certain delay, dictated by the p-base transit time, and the pilot anode current (2 on the figure) begins to flow through a small region near the pilot-gate contact as shown in Fig. 3.14.

This flow of pilot anode current corresponds to the initial sharp rise in the anode current waveform (phase I), as shown in Fig. 3.15. The device switching then goes into phase II, during which the anode current remains fairly constant, suggesting that the resistance of the region has reached its lower limit. This is due to the fact that the pilot anode current (2) takes a finite time to traverse through the p-base laterally and become the gate current for the main cathode area. The n^+-emitters start to inject electrons which traverse the p-base vertically and after a certain finite time (transit time of the p-base) reach the depletion region. The total time taken by the lateral traversal of pilot anode current and the electron transit time across the p-base is the reason for observing this characteristic phase II interval. The width of the phase II interval is comparable to the switching delay, suggesting that the p-base transit time is of primary importance. Once the main cathode region turns on, the resistance of the device decreases and the anode current begins to rise again (transition from phase II to phase III). From this time onward in the switching cycle, the plasma spreading velocity will dictate the rate at which the conduction area will increase. The current density during phase I and phase II can be quite large, leading to a considerable increase in the local temperature and device failure. The detailed effect of the amplifying gate on the anode current rise will be noticed only at high levels of di/dt (in the range of 1000 A/μs). It can be concluded that the amplifying gate will increase gate sensitivity at the expense of some di/dt capability, as demonstrated by Sankaran et al. (8). This
lowering of \(di/dt \) capability can be somewhat offset by an increase in gate-cathode interdigitation as previously discussed.

3.4.4 Temperature Dependencies

The forward blocking voltage of an SCR has been shown to be reduced from 1350 V at 25 \(^\circ\)C to 950 V at −175 \(^\circ\)C in a near linear fashion [8]. Above 25 \(^\circ\)C, the forward-blocking capability is again reduced due to changes in the minority carrier lifetime. Several dominant physical parameters associated with semiconductor devices are sensitive to temperature variations, causing their dependent device characteristics to change dramatically. The most important of these parameters are: i) the minority carrier lifetimes (which control the high-level injection lifetimes); ii) the hole and electron mobilities; iii) the impact ionization collision cross sections; and iv) the free-carrier concentrations (primarily the ionized impurity-atom concentration). Almost all of the impurity atoms are ionized at temperatures >0 \(^\circ\)C, and so further discussion of the temperature effects on ionization is not relevant for normal operation. The detailed discussion of these physical parameters is beyond the scope of this chapter but references listed for those interested in pursuing relevant information about temperature effects.

It is well known that charge carrier recombination events are more efficient at lower temperatures. This shows up as a larger potential drop during forward conduction and a shorter recovery time during turn-off. A plot of the anode current during turn-off, at various temperatures, for a typical GTO is shown in Fig. 3.16.

An approximate relation between the temperature and the forward drop across the \(n \)-base of a thyristor is discussed in detail by Herlet [10] and Hudgins et al. [11]. The junction potential drops in the device, the temperature dependence of the bandgap energy, along with the \(n \)-base potential drop, a temperature-dependent equation relating anode current density \(J_A \), and the applied anode-cathode voltage \(V_{AC} \) are also given in Reference [11]. Data from measurements at forward current densities \(\approx 100 \) A/cm\(^2\) on a GTO rated for 1-kV symmetric blocking have forward voltage drops of 1.7 V at −50 \(^\circ\)C to 1.8 V at 150 \(^\circ\)C.

3.5 Thyristor Parameters

Understanding of a thyristor’s maximum ratings and electrical characteristics is required for proper application. Use of a manufacturer’s data sheet is essential for good design practice. **Ratings** are maximum or minimum values that set limits on device capability. A measure of device performance under specified operating conditions is a **characteristic** of the device. A summary of some of the maximum ratings that must be considered when choosing a thyristor for a given application is provided in Table 3.3. Thyristor types shown in parentheses indicate a maximum rating unique to that device. Both forward and reverse repetitive and nonrepetitive voltage ratings must be considered, and a properly rated device must be chosen so that the maximum voltage ratings are never exceeded. In most cases, either forward or reverse voltage transients in excess of the nonrepetitive maximum ratings result in destruction of the device. The maximum rms or

![FIGURE 3.16 Temperature effect on the anode current tail during turn-off.](image-url)
average current ratings given are usually those that cause the junction to reach its maximum rated temperature. Because the maximum current will depend upon the current waveform and upon thermal conditions external to the device, the rating is usually shown as a function of case temperature and conduction angle. The peak single half-cycle surge-current rating must be considered, and in applications where the thyristor must be protected from damage by overloads, a fuse with an \(I^2t \) rating smaller than the maximum rated value for the device must be used. Maximum ratings for both forward and reverse gate voltage, current, and power also must not be exceeded.

The maximum rated operating junction temperature \(T_J \) must not be exceeded, as device performance, in particular voltage-blocking capability, will be degraded. Junction temperature cannot be measured directly but must be calculated from a knowledge of steady-state thermal resistance \(R_{th(J-C)} \), and the average power dissipation. For transients or surges, the transient thermal impedance \(Z_{th(J-C)} \) curve must be used (provided in manufacturer’s data sheets). The maximum average power dissipation \(P_T \) is related to the maximum rated operating junction temperature and the case temperature by the steady-state thermal resistance. In general, both maximum dissipation and its derating with increasing case temperature are provided.

The number and type of thyristor characteristics specified varies widely from one manufacturer to another. Some characteristics are given only as typical values of minima or maxima, while many characteristics are displayed graphically. Table 3.4 summarizes some of the typical characteristics provided as maximum values. The maximum value means that the manufacturer guarantees that the device will not exceed the value given under the specified operating or switching conditions. A minimum value means that the manufacturer guarantees that the device will perform at least as good as the characteristic given under the specified operating or switching conditions. Thyristor types shown in parentheses indicate a characteristic unique to that device. Gate conditions of both voltage and current to ensure either nontriggered or triggered device operation are included. The turn-on and turn-off transients of the thyristor are characterized by switching times like the turn-off time listed in Table 3.4. The turn-on transient can be divided into three intervals: i) gate-delay interval; ii) turn-on of initial area; and iii) spreading interval. The gate-delay interval is simply the time between application of a turn-on pulse at the gate and the time the initial cathode area turns on. This delay decreases with increasing gate drive current and is of the order of a few microseconds. The second interval, the time required for turn-on of the initial area, is quite short, typically \(< 1 \mu s\). In general, the initial area turned on is a small percentage of the total useful device area. After the initial area turns on, conduction spreads (spreading interval or plasma spreading time) throughout the device in tens of microseconds for high-speed devices or thyristors. The plasma spreading time may take up to hundreds of microseconds in large-area phase-control devices.

Table 3.5 lists many of the thyristor parameters that appear either as listed values or as information on graphs. The definition of each parameter and the test conditions under which they are measured are given in the table as well.

Table 3.4 Typical thyristor characteristic maximums and minimum specified by manufacturers

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{TM}, V_{FM})</td>
<td>Maximum on-state voltage drop (at specified junction temperature and forward current)</td>
</tr>
<tr>
<td>(I_{DRM})</td>
<td>Maximum forward off-state current (at specified junction temperature and forward voltage)</td>
</tr>
<tr>
<td>(I_{RSM})</td>
<td>Maximum reverse off-state current (at specified junction temperature and reverse voltage)</td>
</tr>
<tr>
<td>(dv/dt)</td>
<td>Minimum critical rate of rise of off-state voltage at specified junction temperature and forward-blocking voltage level</td>
</tr>
<tr>
<td>(V_{GT})</td>
<td>Maximum gate trigger voltage (at specified temperature and forward applied voltage)</td>
</tr>
<tr>
<td>(V_{GD}, V_{GDM})</td>
<td>Maximum gate nontrigger voltage (at specified temperature and forward applied voltage)</td>
</tr>
<tr>
<td>(I_{GT})</td>
<td>Maximum gate trigger current (at specified temperature and forward applied voltage)</td>
</tr>
<tr>
<td>(T_p) (GTO)</td>
<td>Maximum turn-on time (under specified switching conditions)</td>
</tr>
<tr>
<td>(T_q)</td>
<td>Maximum turn-off time (under specified switching conditions)</td>
</tr>
<tr>
<td>(I_{OP})</td>
<td>Maximum turn-on delay time (for specified test)</td>
</tr>
<tr>
<td>(R_{th(J-C)})</td>
<td>Maximum junction-to-case thermal resistance</td>
</tr>
<tr>
<td>(R_{th(C-S)})</td>
<td>Maximum case-to-sink thermal resistance (interface lubricated)</td>
</tr>
</tbody>
</table>

3.6 Types of Thyristors

In recent years, most development effort has gone into both continued integration of the gating and control electronics into thyristor modules and the use of MOS technology to create gate structures integrated into the thyristor itself. Many variations of this theme are being developed and some technologies should rise above the others in the years to come. Further details concerning most of the following discussion of thyristor types can be found in Reference [1].

3.6.1 SCRs and GTOs

The highest power handling devices continue to be bipolar thyristors. High-powered thyristors are large diameter devices, some well in excess of 100 mm, and as such have a limitation on the rate of rise of anode current, a \(di/dt \) rating. The depletion capacitances around the \(pn \) junctions, in particular the center junction, limit the rate of rise in forward voltage that can be applied even after all the stored charge, introduced
TABLE 3.5 Symbols and definitions of major thyristor parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0</td>
<td>Thermal Resistance</td>
</tr>
<tr>
<td>$R_{(J\rightarrow A)}$</td>
<td>Junction-to-ambient thermal resistance</td>
</tr>
<tr>
<td>$R_{(J\rightarrow C)}$</td>
<td>Junction-to-case thermal resistance</td>
</tr>
<tr>
<td>$R_{(J\rightarrow S)}$</td>
<td>Junction-to-sink thermal resistance</td>
</tr>
<tr>
<td>$R_{(C\rightarrow S)}$</td>
<td>Contact thermal resistance</td>
</tr>
<tr>
<td>V_D</td>
<td>Transient thermal impedance (Junction-to-sink transient thermal impedance)</td>
</tr>
<tr>
<td>Z_D</td>
<td>Junction-to-ambient transient thermal impedance</td>
</tr>
<tr>
<td>$Z_{_{(J\rightarrow A)}}$</td>
<td>Junction-to-case transient thermal impedance</td>
</tr>
<tr>
<td>$Z_{_{(J\rightarrow S)}}$</td>
<td>Junction-to-sink transient thermal impedance</td>
</tr>
<tr>
<td>T_A</td>
<td>Ambient temperature</td>
</tr>
<tr>
<td>T_S</td>
<td>Sink temperature</td>
</tr>
<tr>
<td>T_C</td>
<td>Case temperature</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction temperature</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage temperature</td>
</tr>
<tr>
<td>$V_{{R{RM}}}$</td>
<td>Peak reverse blocking voltage</td>
</tr>
<tr>
<td>$V_{{R{SM}}}$</td>
<td>Transient peak reverse voltage blocking voltage</td>
</tr>
<tr>
<td>$V_{{R{DC}}}$</td>
<td>DC Reverse blocking voltage</td>
</tr>
<tr>
<td>$V_{{F{SM}}}$</td>
<td>Peak forward blocking voltage</td>
</tr>
<tr>
<td>$V_{{F{DM}}}$</td>
<td>Transient peak forward blocking voltage</td>
</tr>
<tr>
<td>$V_{{F{DDC}}}$</td>
<td>DC Forward blocking voltage</td>
</tr>
<tr>
<td>dv/dt</td>
<td>Critical rate-of-rise of off-state voltage</td>
</tr>
<tr>
<td>V_{TM}</td>
<td>Peak on-state voltage</td>
</tr>
<tr>
<td>$I_{(RMS)}$</td>
<td>RMS on-state current</td>
</tr>
<tr>
<td>$I_{(AV)}$</td>
<td>Average on-state current</td>
</tr>
<tr>
<td>$I_{{F{SM}}}$</td>
<td>Peak on-state current</td>
</tr>
</tbody>
</table>

- **R_0**: Specifies the degree of temperature rise per unit of power, measuring junction temperature from a specified external point. Defined when junction power dissipation results in steady-state thermal flow.
- **$R_{(J\rightarrow A)}$**: The steady-state thermal resistance between the junction and ambient.
- **$R_{(J\rightarrow C)}$**: The steady-state thermal resistance between the junction and case surface.
- **$R_{(J\rightarrow S)}$**: The steady-state thermal resistance between the junction and the heat sink mounting surface.
- **$R_{(C\rightarrow S)}$**: The steady-state thermal resistance between the surface of the case and the heat sink mounting surface.
- **V_D**: The change of temperature difference between two specified points or regions at the end of a time interval divided by the step function change in power dissipation at the beginning of the same interval causing the change of temperature difference.
- **Z_D**: The transient thermal impedance between the junction and ambient.
- **$Z_{_{(J\rightarrow A)}}$**: The transient thermal impedance between the junction and the case surface.
- **$Z_{_{(J\rightarrow S)}}$**: The transient thermal impedance between the junction and the heat sink mounting surface.
- **T_A**: It is the temperature of the surrounding atmosphere of a device when natural or forced-air cooling is used, and is not influenced by heat dissipation of the device.
- **T_S**: The temperature at a specified point on the device heat sink.
- **T_C**: The temperature at a specified point on the device case.
- **T_J**: The device junction temperature rating. Specifies the maximum and minimum allowable operation temperatures.
- **T_{STG}**: Specifies the maximum and minimum allowable storage temperatures (with no electrical connections).
- **$V_{_{R_{RM}}}$**: Within the rated junction temperature range, and with the gate terminal open-circuited, specifies the repetitive peak reverse anode to cathode voltage applicable on each cycle.
- **$V_{_{R_{SM}}}$**: Within the rated junction temperature range, and with the gate terminal open-circuited, specifies the nonrepetitive peak reverse anode to cathode voltage applicable for a time width equivalent to < 5 ms.
- **$V_{_{R_{DC}}}$**: Within the rated junction temperature range, and with the gate terminal open-circuited, specifies the maximum value for dc anode to cathode voltage applicable in the reverse direction.
- **$V_{_{F_{SM}}}$**: Within the rated junction temperature range, and with the gate terminal open-circuited (SCR), or with a specified reverse voltage between the gate and cathode (GTO), specifies the repetitive peak off-state anode to cathode voltage applicable on each cycle. This does not apply for transient off-state voltage application.
- **$V_{_{F_{DM}}}$**: Within the rated junction temperature range, and with the gate terminal open-circuited (SCR), or with a specified reverse voltage between the gate and cathode (GTO), specifies the nonrepetitive peak off-state anode to cathode voltage applicable for a time width equivalent to < 5 ms. This gives the maximum instantaneous value for nonrepetitive transient off-state voltage.
- **$V_{_{F_{DDC}}}$**: Within the rated junction temperature range, and with the gate terminal open-circuited (SCR), or with a specified reverse voltage between the gate and cathode (GTO), specifies the maximum value for dc anode to cathode voltage applicable in the forward direction.
- **dv/dt**: At the maximum rated junction temperature range, and with the gate terminal open-circuited (SCR), or with a specified reverse voltage between the gate and cathode (GTO), this specifies the maximum rate-of-rise of off-state voltage that will not drive the device from an off-state to an on-state when an exponential off-state voltage of specified amplitude is applied to the device.
- **V_{TM}**: At specified junction temperature, and when on-state current (50 or 60 Hz, half sine wave of specified peak amplitude) is applied to the device, indicates peak-value for the resulting voltage drop.
- **$I_{(RMS)}$**: At specified case temperature, indicates the rms value for on-state current that can be continuously applied to the device.
- **$I_{(AV)}$**: At specified case temperature, and with the device connected to a resistive or inductive load, indicates the average value for forward-current (sine half wave, commercial frequency) that can be continuously applied to the device.
- **$I_{_{F_{SM}}}$**: Within the rated junction temperature range, indicates the peak-value for non-repetitive on-state current (sine half wave, 50 or 60 Hz). This value indicated for one cycle, or as a function of a number of cycles. (continued)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{GFM} (GTO)</td>
<td>Peak gate forward power dissipation</td>
</tr>
<tr>
<td>P_{GRM}</td>
<td>Average gate reverse power dissipation</td>
</tr>
<tr>
<td>P_{GRM} (GTO Only)</td>
<td>Peak gate reverse power dissipation</td>
</tr>
<tr>
<td>P_{GRM} (GTO only)</td>
<td>Average gate reverse power dissipation</td>
</tr>
<tr>
<td>I_{GFM}</td>
<td>Peak forward gate current</td>
</tr>
<tr>
<td>I_{GRM} (GTO Only)</td>
<td>Peak reverse gate current</td>
</tr>
<tr>
<td>V_{GRM}</td>
<td>Peak reverse gate voltage</td>
</tr>
<tr>
<td>V_{GFM}</td>
<td>Peak forward gate voltage</td>
</tr>
<tr>
<td>I_{GT}</td>
<td>Gate current to trigger</td>
</tr>
<tr>
<td>V_{GT}</td>
<td>Gate voltage to trigger</td>
</tr>
<tr>
<td>V_{GDM} (SCR Only)</td>
<td>Nontriggering gate voltage</td>
</tr>
<tr>
<td>I_{GO} (GTO Only)</td>
<td>Gate controlled turn-off current</td>
</tr>
<tr>
<td>t_{on} (SCR Only)</td>
<td>Turn-on time</td>
</tr>
<tr>
<td>T_{on} (SCR Only)</td>
<td>Turn-off Time</td>
</tr>
<tr>
<td>t_{off} (GTO Only)</td>
<td>Turn-on time</td>
</tr>
<tr>
<td>T_{off} (GTO Only)</td>
<td>Turn-off time</td>
</tr>
</tbody>
</table>

TABLE 3.5 (Continued)

The maximum, on-state, nonrepetitive short-time thermal capacity of the device and is helpful in selecting a fuse or providing a coordinated protection scheme of the device in the equipment. This rating is intended specifically for operation less than one half cycle of a 180° (degree) conduction angle sinusoidal waveform. The off-state blocking capability cannot be guaranteed at values near the maximum I_{GFM}.

At specified case temperature, specified off-state voltage, specified gate conditions, and at a frequency of <60 Hz, indicates the maximum rate-of-rise of on-state current which the thyristor will withstand when switching from an off-state to an on-state, when using recommended gate drive.

At maximum rated junction temperature, indicates the peak value for reverse-current flow when a voltage (sine half wave, 50 or 60 Hz, and having a peak value as specified for repetitive peak reverse-voltage rating) is applied in a reverse direction to the device.

At maximum rated junction temperature, indicates the peak-value for off-state-current flow when a voltage (sine half wave, 50 or 60 Hz, and having a peak value for repetitive off-state voltage rating) is applied in a forward direction to the device. For a GTO, a reverse voltage between the gate and cathode is specified.

Within the rated junction temperature range, indicates the peak value for maximum allowable power dissipation over a specified time period, when the device is in forward conduction between the gate and cathode.

Within the rated junction temperature range, indicates the average value for maximum allowable power dissipation when the device is forward-conducting between the gate and cathode.

Within the rated junction temperature range, indicates the peak value for maximum allowable power dissipation in the reverse direction between the gate and cathode, over a specified time period.

Within the rated junction temperature range, indicates the peak value for forward-current flow between the gate and cathode.

Within the rated junction temperature range, indicates peak value for reverse-current that can be conducted between the gate and cathode.

Within the rated junction temperature range, indicates the peak value for reverse-voltage applied between the gate and cathode.

Within the rated junction temperature range, indicates the peak value for forward-voltage applied between the gate and cathode.

At a junction temperature of 25 °C, and with a specified off-voltage, and a specified load resistance, indicates the minimum gate dc current required to switch the thyristor from an off-state to an on-state.

At a junction temperature of 25 °C, and with a specified off-state voltage, and a specified load resistance, indicates the maximum dc gate voltage required to switch the thyristor from an off-state to an on-state.

At maximum rated junction temperature, and with a specified off-state voltage applied to the device, indicates the maximum dc gate voltage that will not switch the device from an off-state to an on-state. Under specified conditions, indicates the instantaneous value for on-current usable in gate control, specified immediately prior to device turn-off.

At specified junction temperature, and with a peak repetitive off-state voltage of half-rated value, followed by device turn-on using specified gate current, and when specified on-state current of specified di/dt flows, indicated as the time required for the applied off-state voltage to drop to 10% of its initial value after gate current application. Delay time is the term used to define the time required for applied voltage to drop to 90% of its initial value following gate-current application. The time required for the voltage level to drop from 90% to 10% of its initial value is referred to as rise time. The sum of both of these defines turn-on time.

Specified at maximum rated junction temperature. Device set up to conduct on-state current, followed by applying specified reverse anode-cathode voltage to quench on-state current, and then increasing the anode-cathode voltage at a specified rate-of-rise as determined by circuit conditions controlling the point where the specified off-state voltage is reached. Turn-off time defines the minimum time which the device will hold its off-state, starting from the time on-state current reached zero until the time forward voltage is again applied (i.e., applied anode-cathode voltage becomes positive again).

When applying forward-current to the gate, indicates the time required to switch the device from an off-state to an on-state.

When applying reverse-current to the gate, indicates the time required to switch the device from an on-state to an off-state.
during conduction, is removed. The associated displacement current under application of forward voltage during the thyristor blocking state sets a dv/dt limit. Some effort in improving the voltage hold-off capability and overvoltage protection of conventional silicon-controlled rectifiers (SCRs) is underway by incorporating a lateral high-resistivity region to help dissipate the energy during break-over. Most effort, though, is being directed toward further development of high-performance gate turn-off (GTO) thyristors because of their controllability and to a lesser extent in optically triggered structures that feature gate circuit isolation.

High-voltage GTO thyristors with symmetric blocking capability require thick n-base regions to support the high electric field. The addition of an n^+-buffer layer next to the p^+-anode allows high voltage blocking and a low forward voltage drop during conduction because of the thinner n-base required. Cylindrical anode shorts have been incorporated to facilitate excess carrier removal from the n-base during turn-off and still retain high blocking capability. This device structure can control 200 A, operating at 900 Hz, with a 6-kV hold-off. Some of the design trade-offs between the n-base width and turn-off energy losses in these structures been determined. A similar GTO incorporating an n^+-buffer layer and a pin structure has been fabricated that can control up to 1 kA (at a forward drop of 4 V) with a forward blocking capability of 8 kV. A reverse-conducting GTO has been fabricated that can block 6 kV in the forward direction, interrupt a peak current of 3 kA, and has a turn-off gain of ≈ 5.

A modified GTO structure, called a gate commutated thyristor (GCT), has been designed and manufactured that commutates all of the cathode current away from the cathode region and diverts it out the gate contact. The GCT is similar to a GTO in structure except that it has a low-loss n-buffer region between the n-base and p-emitter. The GCT device package is designed to result in very low parasitic inductance and is integrated with a specially designed gate-drive circuit. The specially designed gate drive and ring-gate package circuit allow the GCT to be operated without a snubber circuit and with higher anode di/dt, than a similar GTO. At blocking voltages of 4.5 kV and higher the GCT seems to provide better performance than a conventional GTO. The speed at which the cathode current is diverted to the gate (di_{CO}/dt) is directly related to the peak snubberless turn-off capability of the GCT. The gate drive circuit can sink current for turn-off at di_{CO}/dt values > 7000 A/μs. This hard gate drive results in a low charge storage time of ≈ 1 μs. Low storage time and fail-short mode make the GCT attractive for high-voltage series applications.

3.6.2 MOS-Controlled Thyristors, MCT

The corresponding equivalent circuit of the p-type MCT unit cell is provided in Fig. 3.17. When the MCT is in its forward blocking state and a negative gate-anode voltage is applied, an inversion layer is formed in the n-doped material that allows holes to flow laterally from the p-emitter (p-channel FET source) through the channel to the p-base (p-channel FET drain). This hole flow is the base current for the npn transistor. The n-emitter then injects electrons, which are collected in the n-base, causing the npn transistor to turn off. The remaining stored charge recombines and returns the MCT to its blocking state. The seeming variability in fabrication of the turn-off FET structure continues to limit the performance of MCTs, particularly current interruption capability, although these devices can handle 2 to 5 times the conduction current density of IGBTs. Numerical modeling and experimental verification of the modeling have shown the sensitivity that an ensemble of cells has to current filamentation during turn-off. All MCT device designs center around the problem of current interrup-
tion capability. Both turn-on, which is relatively simple, by comparison, and conduction properties approach the one-dimensional (1D) thyristor limit.

Early generations of MCTs had >50,000 cells connected in parallel. Newer devices have >200,000 cells, with a total active area of 0.38 cm². These devices are rated for 1000 V and a peak controllable current of 75 A. All of the cells contain an n-channel FET structure to turn off, and 4% have the p-channel FET structure to turn the device on. The latest version of the “standard” MCT is a diffusion–doped (instead of the usual epitaxial growth) device with an active area of 1 cm². They are rated for 3000-V forward blocking, have a forward drop of 2.5 V at 100 A, and are capable of interrupting around 300 A with a recovery time of 5 μs. Three of these high-voltage devices have been placed in a series array that operates at 5-kV blocking and interrupts 150 A. Other MCTs have been designed to withstand 2.5 kV with a turn-off capability of several kiloamperes per square centimeter per unit cell. Turn-off simulations have been performed for high-voltage MCTs as well as discussion of lateral device designs. A thorough analysis of the interaction of field plates and guard rings in punch-through and non-punch-through structures, for achieving high-voltage planar junctions has also been performed.

Trench- or buried-gate technology has contributed to the reduction of the R_{on} Area product in power MOSFETs by a factor of three or more compared to surface gate devices. An MCT that uses this technology, called a depletion-mode thyristor (DMT), was designed. The cross section of the device and a simple equivalent circuit are shown in Fig. 3.18. The depletion region formed between the trench-gate fingers, by applying a negative gate-cathode voltage, diverts current away from the n^+-emitter (cathode) of the thyristor structure to the collector of a pnp transistor structure (also at the cathode) through a lateral resistance (the p-base of the thyristor). This current diversion turns off the equivalent npn transistor of the thyristor structure, thus depriving the thyristor’s pnp transistor of any base current and which results in complete turn-off of the device. Depletion mode thyristors were produced that had forward-blocking ratings of 500 V, 1.1 V forward drop at 200 A/cm² (a similar IGBT had a forward drop of 2 V at the same current density), and could control a maximum current density of 5000 A/cm². A similar device is the base resistance controlled thyristor (BRT). Here, a p-channel MOSFET is integrated into the n-drift region of the MCT, and is used to modulate the lateral p-base resistance of the thyristor, causing the holding current to increase above the conduction value, thus achieving turn-off. Some BRTs were fabricated with 600-V blocking capability and an active area of 1.3 mm² (315 cells). These devices operate in an “IGBT” mode until the current is large enough to cause the thyristor structure to latch. The forward drop was 1.24 V at 300 A/cm², about the same as a similarly fabricated thyristor.

Another new MCT structure has been demonstrated. Called an emitter switched thyristor (EST), it uses an integrated lateral MOSFET to connect a floating thyristor n-emitter region to an n^+-thyristor cathode region, as shown in Fig. 3.19. The lateral MOS structure is such that it can initially turn on the thyristor’s pnp transistor. When enough anode current flows, the p-base-n-floating-emitter junction injects carriers and the thyristor latches (the EST moves from an IGBT-like operating mode to a latched thyristor mode). All thyristor current flows through the lateral MOSFET so that it can control the thyristor current. The gate can lose control if the thyristor current becomes excessive so that the parallel parasitic thyristor latches. The ESTs were designed for 600-V forward-blocking and can interrupt 1000 A/cm² per unit cell with a turn-off time ≈7 μs. Integrating an IGBT into a thyristor structure has been proposed. This device, called an IGBT-triggered thyristor (ITT), is similar in structure and operation to the EST. Two-dimensional (2D) simulations comparing switching of an inductive load and conduction performance of the ITT to a conventional IGBT have indicated...
that the ITT has a lower forward drop (0.5 V lower at 100 A/cm²) with only a slightly increased turn-off time: 0.19 μs for the ITT and 0.16 μs for the IGBT.

The best designed EST is the dual gate emitter switched thyristor (DG-EST) [12]. The structure is shown in Fig. 3.20. The leftmost gate controls the IGBT current, as indicated in the figure. The rightmost gate forms the MOS channel in series with the thyristor current. The second gate determines whether the thyristor section is in or out. Switching as an IGBT has considerable advantages in terms of controllability, particularly in practical circuits.

There are a number of important features in the DG-EST. The IGBT section, creating the "IGBT electrons" is similar to a conventional modern IGBT design. The good shorting essential to latch-up free operation can be identified by the deep p-well along with the cathode metallization. The thyristor structure is unlike that of typical discrete thyristor devices in that the junctions are very shallow, in order to make them compatible with IGBT processing. However, similarities to conventional thyristors exist in that the N2 region must be heavily doped for good electron injection efficiency. Further, in common with conventional thyristors, the P2 region is shorted. Here, the shorting would appear excessive, except that the p-doping is carefully controlled to give a lateral resistance, and unwanted turn-on is not possible as the N2 emitter is separately controlled by its own lateral MOS channel.

The DG-EST is intended to be switched in IGBT mode, so as to exploit the controllability and snubberless capabilities of an IGBT. Thus, the lateral MOS channel is only turned on after the voltage across the device has started falling. At turn-off, the lateral MOS channel is turned off a short time before the IGBT section starts to switch. As the lateral MOS only turns off into the IGBT on-state, it needs only a low blocking voltage. Therefore, it can be a good quality lateral device that introduces a low additional voltage in the on-state.

3.6.3 Static Induction Thyristors

A static induction thyristor (SITh) or field controlled thyristor (FCTh) has a cross section similar to that shown in Fig. 3.21. Other SITh configurations have surface gate structures. The device is essentially a pin diode with a gate structure that can pinch-off anode current flow. Large area devices are generally the buried-gate type because larger cathode areas and, hence, larger current densities are possible. Planar gate devices have been fabricated with blocking capabilities of up to 1.2 kV and conduction currents of 200 A, while step-gate (trench-gate) structures have been produced that are able to block up to 4 kV and conduct 400 A. Similar devices with a "Verigrid"
structure have been demonstrated that can block 2 kV and conduct 200 A, with claims of up to 3.5-kV blocking and 200-A conduction. Buried gate devices that block 2.5 kV and conduct 300 A have also been fabricated.

3.6.4 Optically Triggered Thyristors

Optically gated thyristors have traditionally been used in power utility applications where series stacks of devices are necessary to achieve the high voltages required. Isolation between gate drive circuits for circuits such as static VAR compensators and high-voltage dc to ac inverters have driven the development of this class of devices. One of the most recent devices can block 6 kV forward and reverse, conduct 2.5 kA average current, and maintains a di/dt capability of 300 A/μs, and a dv/dt capability of 3000 V/μs, with a required trigger power of 10 mW. An integrated light-triggered and light-quenched static induction thyristor has been produced that can block 1.2 kV and conduct up to 20 A (at a forward drop of 2.5 V). This device is an integration of a normally off, buried-gate static induction photothyristor and a normally off, p-channel Darlington surface-gate static induction phototransistor. The optical trigger and quenching power required is <5 and 0.2 mW, respectively.

3.6.5 Bidirectional Control Thyristor

The Bidirectional control thyristor (BCT) is an integrated assembly of two antiparallel thyristors on one Si wafer. The intended application for this switch is in VAR compensators, static switches, soft starters, and motor drives. These devices are rated at up to 6.5 kV blocking. Cross talk between the two halves has been minimized. A cross section of the BCT is shown in Fig. 3.22. Note that each surface has a cathode and an anode (opposite devices). The small gate-cathode periphery necessarily restricts the BCT to low-frequency applications because of its di/dt limit.
A low-power device similar to the BCT, but in existence for many years, is the Triac. A simplified cross section of a Triac is shown in Fig. 3.23. A positive voltage applied to the anode with respect to the cathode forward-biases J_1, while reverse-biasing J_2, J_4, and J_3 are shorted by the metal contacts. When J_2 is biased to breakdown, a lateral current flows in the p_2-region. This lateral flow forward-biases the edge of J_3, causing carrier injection. The result is that the device switches into its thyristor mode and latches. Applying a reverse voltage causes the opposite behavior at each junction, but with the same result. Figure 3.23 also shows the iv plot for a Triac. The addition of a gate connection allows the breakover to be controlled at a lower forward voltage.

3.7 Gate Drive Requirements

3.7.1 Snubber Circuits

To protect a thyristor, from a large di/dt during turn-on and a large dv/dt during turn-off, a snubber circuit is needed. A general snubber topology is shown in Figure 3.24. The turn-on snubber is made by inductance L_1 (often L_1 is stray inductance only). This protects the thyristor from a large di/dt during the turn-on process. The auxiliary circuit made by R_1 and D_1 allows the discharging of L_1 when the thyristor is turned off. The turn-off snubber is made by resistor R_2 and capacitance C_2. This circuit protects a GTO from large dv/dt during the turn-off process. The auxiliary circuit made by D_2 and R_2 allows the discharging of C_2 when the thyristor is turned on. The circuit of capacitance C_2 and inductance L_1 also limits the value of dv/dt across the thyristor during forward blocking. In addition, L_1 protects the thyristor from reverse over-currents.

3.7.2 Gate Circuits

It is possible to turn on a thyristor by injecting a current pulse into its gate. This process is known as gating the thyristor. The most important restrictions are on the maximum peak and duration of the gate pulse current. In order to allow a safe turn-on commutation, the current pulse should be high enough...
enough and, in order to avoid an unwanted turn-off immediately after the turn-on, it should last for a sufficient time. In estimating how large the gate current pulse should be to ensure device turn on, the gate current-voltage characteristic, which is given with the device data sheet, must be used. An example of this kind of data sheet is shown in Fig. 3.25.

In Fig. 3.25 are shown the gate current-voltage characteristics for the maximum and minimum operating temperatures. The dashed line represents the minimum gate current and corresponding gate voltage needed to ensure that the thyristor will be triggered at various operating temperatures. It is also known as the locus of minimum firing points. On the data sheet it is possible to find a line representing the maximum operating power of the thyristor gating internal circuit. The straight line, between V_G and V_G/R_G, represents the current voltage characteristic of the equivalent trigger circuit. If the equivalent trigger circuit line intercepts the two gate current-voltage characteristics for the maximum and minimum operating temperatures after they intercept the dashed line and before they intercept the maximum operating power line, then the trigger circuit is able to turn on the thyristor at any operating temperature without destroying or damaging the device.

Another feature of the gating process that should be analyzed is the fast turn-on required for these devices. In order to allow a fast turn-on, and correspondingly large anode di/dt during the turn-on process, a large gate current pulse is supplied during the initial turn-on phase with a large di_G/dt. The gate current is kept on, at lower value, for some time after the thyristor is turned on in order to avoid unwanted turn-off of the device. A shaped gate current waveform of this type is shown in Fig. 3.26.

In order to keep the power and control circuits electrically unconnected, the gate signal generator and the gate of the thyristor are often connected through a transformer. There is a transformer winding for each thyristor; this way, unwanted short-circuits between devices are avoided. A general block diagram of a thyristor gate-trigger circuit is shown in Fig. 3.27. This application is for a standard bridge configuration often used in power converters.
Another problem can arise if the trigger circuit produces just one pulse and there exists an RL-type load. For example, if the circuit is a single-phase controlled bridge, the load is only resistive, and then delay angle between the load current and voltage across is 0°. If the load is an RL-type, the load current will reach zero after the voltage across it does. It could happen that a thyristor is triggered before the opposite one is turned off, and because of the short time of the current pulse, it becomes impossible to control the bridge in the desired way. A possible solution to this problem could be the generation of a longer current pulse. Because of the presence of the transformer, a solution like the one just described is not possible. An alternative solution can be the generation of a series of short pulses that last as long as a long single pulse. A single short pulse, a single long pulse, and a series of short pulses are shown in Fig. 3.28.

There are many gate trigger circuits that use optical isolation between the logic-level electronics and a drive stage (typically MOSFETs) configured in a push-pull output. The dc power supply voltage for the drive stage is provided through transformer isolation. Many device manufacturers supply drive circuits available on PC boards or diagrams of suggested circuits.

3.8 PSpice Model

Circuit simulators such as Spice and PSpice are widely used as tools in the design of power systems. For this purpose equivalent circuit models for thyristors have been developed. A variety of models have been proposed with varying degrees of complexity and accuracy. Many times the simple two-transistor model described in Section 3.2 is used in PSpice. This simple structure, however, cannot create the appropriate negative-differential-resistance (ndr) behavior as the thyristor moves from forward-blocking to forward-conduction. A
PSpice model for a GTO developed by Tsay et al. [13] captures many of the behaviors of thyristors. This model creates device characteristics such as the static $I-V$ curve shown in Fig. 3.3, dynamic characteristics such as turn-on and turn-off times, device failure modes such as current crowding due to excessive di/dt at turn-on, and spurious turn-on due to excessive dv/dt at turn-off, thermal effects, and so on. Specifically, three resistors are added to the two-transistor model to create the appropriate behavior.

The proposed two-transistor, three-resistor model (2T-3R) is shown in Fig. 3.29. This circuit exhibits the desired NDR behavior. Given the static $I-V$ characteristics for an SCR or GTO, it is possible to obtain similar curves from the model by choosing appropriate values for the three resistors and for the forward current gains a_p and a_n of the two transistors. The process of curve-fitting can be simplified by keeping in mind that resistor R_1 tends to affect the negative slope of the $I-V$ characteristic, resistor R_2 tends to affect the value of the holding current I_{th}, and resistor R_3 tends to affect the value of the forward breakdown voltage V_{FBD}. When modeling thyristors with cathode or anode shorts, as described in Section 3.4, the presence of these shorts determines the values of R_1 and R_2, respectively. In the case of a GTO an important device characteristic is the so-called turn-off gain $K_{off} = I_A/|I_{Ct}|$, that is, the ratio of the anode current to the negative gate current required to turn off the device. An approximate formula relating the turn-off gain to the a’s of the two transistors is given in what follows:

$$K_{off} = \frac{a_n}{a_n + a_p - 1}$$ \hspace{1cm} (3.3)

The ability of this model to predict dynamic effects depends on the dynamics included in the transistor models. If transistor junction capacitances are included, it is possible to model the dv/dt limit of the thyristor. Too high a value of dv_{AK}/dt will cause significant current to flow through the J_2 junction capacitance. This current acts like a gate current and can turn on the device.
This model does not accurately represent spatial effects such as current crowding at turn-on (the \(\frac{dI}{dt} \) limit), when only part of the device is conducting, and, in the case of a GTO, current crowding at turn-off, when current is extracted from the gate to turn off the device. Current crowding is caused by the location of the gate connection with respect to the conducting area of the thyristor and by the magnetic field generated by the changing conduction current. Gate-contact and cathode-contact resistance can be included for each cell as well. To model these effects, Tsay et al. [13] propose a multicell circuit model, in which the device is discretized in a number of conducting cells, each having the structure of Fig. 3.30. This model, shown in Fig. 3.31, takes into account the mutual inductive coupling, the delay in the gate turn-off signal due to positions of the cells relative to the gate connection, and nonuniform gate- and cathode-contact resistance. In particular, the \(RC \) delay circuits (series \(R \) with a shunt \(C \) tied to the cathode node) model the time delays between the gate triggering signals due to the position of the cell with respect to the gate connection; coupled inductors, \(M \)'s, model magnetic coupling between cells; resistors, \(R_{GC} \)'s, model non-uniform contact resistance; resistors, \(R_{KC} \)'s, model gate contact resistances. The various circuit elements in the model can be estimated from device geometry and measured electrical characteristics. The choice of the number of cells is

Table 3.6: Element values for each cell of a multicell GTO model

<table>
<thead>
<tr>
<th>Model Component</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay resistor</td>
<td>(R)</td>
<td>1 (\mu \Omega)</td>
</tr>
<tr>
<td>Delay capacitor</td>
<td>(C)</td>
<td>1 nF</td>
</tr>
<tr>
<td>Mutual coupling inductance</td>
<td>(M)</td>
<td>10 nH</td>
</tr>
<tr>
<td>Gate contact resistance</td>
<td>(R_{GC})</td>
<td>1 m(\Omega)</td>
</tr>
<tr>
<td>Cathode contact resistance</td>
<td>(R_{KC})</td>
<td>1 m(\Omega)</td>
</tr>
</tbody>
</table>
a trade-off between accuracy and complexity. An example of the values of the RC delay network, R_{GC}'s, R_{KC}'s, M's is given in Table 3.6.

3.9 Applications

The most important application of thyristors is for line-frequency, phase-controlled rectifiers. This family includes several topologies, of which one of the most important is used to construct high voltage dc (HVDC) transmission systems. A single-phase controlled rectifier is shown in Fig. 3.31.

The presence of thyristors makes the average output voltage controllable by appropriate gating of the thyristors. If the gate signals to the thyristors were continuously applied, the thyristors in Fig. 3.31 behave as diodes. If no gate currents are supplied they behave as open circuits. Gate current can be applied any time (phase delay) after the forward voltage becomes positive. Using this phase-control feature it is possible to produce an average output voltage less than the average output voltage obtained from an uncontrolled rectifier.

3.9.1 Direct current-Alternating current Utility Inverters

Three-phase converters can be made in different ways, according to the system in which they are employed. The basic circuit used to construct these topologies is shown in Fig. 3.32.

The thyristors in the circuit of Fig. 3.32 are used in the same way they were used in single-phase circuits but necessarily with more complex control. Starting from this basic configuration, it is possible to construct more complex circuits in order to obtain high-voltage or high-current outputs, or just to reduce the output ripple by constructing a multiphase converter. One of the most important systems using the topology shown in Fig. 3.32 as a basic circuit is the HVDC system represented in Fig. 3.33. This system is made by two converters, a transmission line, and two ac systems. Each converter terminal is made of two poles. Each pole is made by connecting two 6-pulse line-frequency converters through
Δ-Y and Y-Y transformers in order to obtain a 12-pulse converter and a reduced output ripple. The filters are required to reduce the current harmonic generated by the converter. Thyristors are required in order to reduce the voltage amplitude to the ac voltage amplitude level by appropriate switching action.

When a large amount of current and relatively low voltage is required, it is possible to connect, using a specially designed inductor, two 6-pulse line-frequency converters connected through Δ-Y and Y-Y transformers. This topology is shown in Fig. 3.34.

3.9.2 Motor Control

Another important application of thyristors is in motor control circuits. They are used to construct the first stage of an electric motor drive in order to vary the amplitude of the voltage waveform across the windings of the electrical motor as it is shown in Fig. 3.35.

An electronic controller controls the gate current of these thyristors. The rectifier and inverter sections can be thyristor circuits. A controlled rectifier is used in conjunction with a square wave or pulse-width modulated (PWM) voltage source inverter (VSI) to create the speed-torque controller system. Figure 3.36 shows a square-wave or PWM VSI with a controlled rectifier on the input side. The switch block inverter is made of thyristors (usually GTOs) for high power. Low-power motor controllers often use IGBT inverters.

In motor control, thyristors are also used in current-source (CSI) topologies. When the motor is controlled by a CSI, a controlled rectifier is also needed on the input side. Figure 3.37 shows a typical CSI inverter.

Diodes, capacitors, and the motor leakage inductance make a forced commutation circuit. These circuits are needed to force the current through the thyristors to zero, in order to turn them off if using SCRs. This is not needed when using GTOs. This inverter topology does not need any additional circuitry to provide the regenerative braking (energy recovery when slowing the motor). To allow bidirectional power flow,
then to allow regenerative braking, two back-to-back connected line-frequency thyristor converters used to be employed in the past. Use of antiparallel GTOs with symmetric blocking capability or diodes in series with each asymmetric GTO reduces the number of power devices needed, but greatly increases the control complexity.

3.9.3 VAR Compensators and Static Switching Systems

Thyristors are also used to switch capacitors (TSC) or inductors (TCI) in order to control the reactive power in the system. An example of these circuits is shown in Fig. 3.38. These circuits act as a static VAR (volts-amps reactive) controller. The topology represented on the left-hand side of Fig. 3.38 is called a thyristor-controlled inductor (TCI) and it acts as a variable inductor where the inductive VAR supplied can be varied quickly. Because the system may require either inductive or capacitive VAR, it is possible to connect a bank of capacitors in parallel with a TCI. The topology shown on the right-hand side of Fig. 3.38 is called a thyristor-switched capacitor (TSC). Capacitors can be switched out by blocking the gate pulse of all thyristors in the circuit. The problem of this topology is the voltage across the capacitors at the thyristor turn-off. At turn-on the thyristor must be gated at the instant of the maximum ac voltage to avoid large overcurrents.

A less important application of thyristors is as a static transfer switch, used to improve the reliability of uninterruptible power supplies (UPS) as shown in Fig. 3.39. There are two modes of using the thyristors. The first leaves the load permanently connected to the UPS system and in case of emergency disconnects the load from the UPS and connects it directly to the power line. The second mode is opposite to the first one. Under normal conditions the load is permanently connected to the power line, and in event of a line outage, the load is disconnected from the power line and connected to the UPS system.
References

Gate Turn-Off Thyristors

4.1 Introduction

A gate turn-off thyristor (known as a GTO) is a three-terminal power semiconductor device that belongs to a thyristor family with a four-layer structure. They also belong to a group of power semiconductor devices that have the ability to fully control on and off states via the control terminal (gate). The design, development, and operation of the GTO is easier to understand if we compare it to the conventional thyristor. Like a conventional thyristor, applying a positive gate signal to its gate terminal can turn on a GTO. Unlike a standard thyristor, a GTO is designed to turn off by applying a negative gate signal.

There are two types of GTOs: asymmetrical and symmetrical. The asymmetrical GTOs are the most common type on the market. This type is normally used with an antiparallel diode and hence high reverse-blocking capability is not available. Reverse conducting is accomplished with an antiparallel diode integrated onto the same silicon wafer. The symmetrical GTOs have equal forward- and reverse-blocking capability.

4.2 Basic Structure and Operation

The symbol for a GTO is shown in Fig. 4.1a. A high degree of interdigitation is required in GTOs in order to achieve efficient turn-off. The most common design employs the cathode area separated into multiple segments (cathode fingers) and arranged in concentric rings around the device center. The internal structure is shown in Fig. 4.1b. A common contact disk pressed against the cathode fingers connects the fingers together. It is important that all the fingers turn off simultaneously, otherwise the current may be concentrated into fewer fingers, with damage due to overheating more likely.

The high level of gate interdigitation also results in a fast turn-on speed and high dv/dt performance of GTOs. The most remote part of a cathode region is no more than 0.16 mm from a gate edge and hence the entire GTO can conduct within $\approx 5 \mu s$ with sufficient gate drive and the turn-on losses can be reduced. However, interdigitation reduces the available emitter area and therefore the low-frequency average current rating is less than for a standard thyristor with an equivalent diameter.

The basic structure of a GTO, a four-layer p-n-p-n semiconductor device, is very similar in construction to a thyristor. It has several design features that allow it to be turned on and off by reversing the polarity of the gate signal. The most important differences are that the GTO has long narrow emitter fingers surrounded by gate electrodes and no cathode shorts.

The turn-on mode is similar to that of a standard thyristor. The injection of the hole current from the gate forward biases the cathode p-base junction, causing electron emission from the cathode. These electrons flow to the anode and induce hole injection by the anode emitter. The injection of holes and electrons into the base regions continues until charge multiplication effects bring the GTO into conduction. This is shown in Fig. 4.2a. As with a conventional thyristor, only the area of cathode adjacent to the gate electrode is turned on initially and the remaining area is brought into conduction by plasma spreading. However, unlike the thyristor, the GTO consists of many narrow cathode elements, heavily interdigitated with the gate electrode, and therefore the initial turned-on area is very large and the time required for plasma spreading is small.
Therefore, the GTO is brought into conduction very rapidly and can withstand a high turn-on $\frac{di}{dt}$.

In order to turn off a GTO, the gate is reversed-biased with respect to the cathode and holes from the anode are extracted from the p-base. This is shown in Fig. 4.2b. As a result, a voltage drop is developed in the p-base region, which eventually reverse biases the gate cathode junction and cuts off the injection of electrons. As the hole extraction continues, the p-base is further depleted, thereby squeezing the remaining conduction area. The anode current then flows through the areas most remote from the gate contacts, forming high current density filaments. This is the most crucial phase of the turn-off process in GTOs because high-density filaments lead to localized heating, which can cause device failure unless these filaments are extinguished quickly. An application of higher negative gate voltage may aid in extinguishing the filaments rapidly. However, the breakdown voltage of the gate-cathode junction limits this method.

When the excess carrier concentration is low enough for carrier multiplication to cease and the device reverts to the forward blocking condition. Although the cathode current has stopped flowing at this point, anode-to-gate current supplied by the carriers from an n-base region-stored charge continues to flow. This is observed as a tail current that decays exponentially as the remaining charge concentration is reduced by a recombination process. The presence of this tail current with the combination of high GTO off-state voltage produces substantial power losses. During this transition period, the

![Figure 4.1](image1.png)

FIGURE 4.1 GTO structure: (a) GTO symbol; (b) GTO structure.

![Figure 4.2](image2.png)

FIGURE 4.2 (a) Turn-on; and (b) turn-off of GTOs.
electric field in the n-base region is grossly distorted due to the presence of the charge carriers and may result in premature avalanche breakdown. The resulting impact ionization can cause device failure. This phenomenon is known as "dynamic avalanche." The device regains its steady-state blocking characteristics when the tail current diminishes to leakage current level.

4.3 GTO Thyristor Models

A one-dimensional two-transistor GTO model is shown in Fig. 4.3. The device is expected to yield the turn-off gain \(g \) given by:

\[
A_g = \frac{I_A}{I_G} = \frac{\alpha_{npn}}{\alpha_{pnp} + \alpha_{npn} - 1} \tag{4.1}
\]

where \(I_A \) is the anode current and \(I_G \) the gate current at turn-off, and \(\alpha_{npn} \) and \(\alpha_{pnp} \) are the common-base current gains in the n-p-n and p-n-p transistor sections of the device. For a nonshorted device, the charge is drawn from the anode and regenerative action commences, but the device does not latch on (remain on when the gate current is removed) until

\[
\alpha_{npn} + \alpha_{pnp} \geq 1 \tag{4.2}
\]

This process takes only a short time for the current and the current gains to increase enough to satisfy Eq. (4.2). For anode-shorted devices, the mechanism is similar but the anode short impairs the turn-on process by providing a base–emitter short, thus reducing the p-n-p transistor gain, which is shown in Fig. 4.4. The composite p-n-p gain of the emitter-shorted structure is given as follows:

\[
\alpha_{pnp}^{\text{composite}} = \frac{\alpha_{pnp} (1 - V_{be})}{R_{S \text{anode}}} \tag{4.3}
\]

where \(V_{be} \) = emitter base voltage (generally 0.6 V for injection of carriers) and \(R_S \) is the anode-short resistance. The anode emitter injects when the voltage around it exceeds 0.06 V, and therefore the collector current of the n-p-n transistor flowing through the anode shorts influences turn-on. The GTO remains in a transistor state if the load circuit limits the current through the shorts.

4.4 Static Characteristics

4.4.1 On-State Characteristics

In the on-state, the GTO operates in a similar manner to the thyristor. If the anode current remains above the holding current level then positive gate drive may be reduced to zero and the GTO will remain in conduction. However, as a result of the turn-off ability of the GTO, it does possess a higher holding current level than the standard thyristor and, in addition, the cathode of the GTO thyristor is subdivided into small finger elements to assist turn-off. Thus, if the GTO thyristor anode current transiently dips below the holding current level, localized regions of the device may turn off,
thus forcing a high anode current back into the GTO at a high rate of rise of anode current after this partial turn-off. This situation could be potentially destructive. Therefore, it is recommended that the positive gate drive not be removed during conduction but held at a value \(I_{GON}^{ON}\) where \(I_{GON}^{ON}\) is greater than the maximum critical trigger current \(I_{GT}\) over the expected operating temperature range of the GTO thyristor.

Figure 4.5 shows the typical on-state \(v-I\) characteristics for a 4000-A, 4500-V GTO from the Dynex range of GTOs [1] at junction temperatures of 25 and 125°C. The curves can be approximated to a straight line of the form:

\[
V_{TM} = V_0 + IR_0 \tag{4.4}
\]

where \(V_0\) = voltage intercept and it models the voltage across the cathode and anode forward-biased junctions, and \(R_0\) = on-state resistance. When average and RMS values of on-state current \((I_{TAV}, I_{TRMS})\) are known, then the on-state power dissipation \(P_{ON}\) can be determined using \(V_0\) and \(R_0\). That is,

\[
P_{ON} = V_0 I_{TAV} + R_0 I_{TRMS}^2 \tag{4.5}
\]

14.4.2 Off-State Characteristics

Unlike the standard thyristor, the GTO does not include cathode emitter shorts to prevent nongated turn-on effects due to \(dv/dt\)-induced forward-biased leakage current. In the off-state of the GTO, steps should therefore be taken to prevent such potentially dangerous triggering. This can be accomplished by either connecting the recommended value of resistance between gate and cathode \(R_{GK}\) or maintaining a small reverse bias on the gate contact \((V_{RG} = -2 \text{ V})\). This will prevent the cathode emitter from becoming forward-biased and will therefore sustain the GTO thyristor in the off state.

The peak off-state voltage is a function of resistance \(R_{GK}\). This is shown in Fig. 4.6. Under ordinary operating conditions, GTOs are biased with a negative gate voltage of \(\approx -15 \text{ V}\) supplied from the gate drive unit during the off-state interval. Nevertheless, provision of \(R_{GK}\) may be a desirable design practice in the event the gate-drive failure for any reason \((R_{GK} < 1.5 \Omega\) is recommended for a large GTO). Here \(R_{GK}\) dissipates energy and hence adds to the system losses.

4.4.3 Rate of Rise of Off-State Voltage \((dv_T/dt)\)

The rate of rise of off-state voltage \((dv_T/dt)\) depends on the resistance \(R_{GK}\) connected between the gate and the cathode and the reverse bias applied between the gate and the cathode. This relationship is shown in Fig. 4.7.

1.4.4 Gate Triggering Characteristics

The gate trigger current \(I_{GT}\) and the gate trigger voltage \((V_{GT})\) are both dependent on junction temperature \(T_j\) as shown in Fig. 4.8. During the conduction state of the GTO a certain value of gate current must be supplied and this value should be larger than the \(I_{GT}\) at the lowest junction temperature at which the GTO operates. In dynamic conditions the specified \(I_{GT}\) is not sufficient to trigger the GTO switching from higher voltage and high \(dv/dt\). In practice, a much higher peak gate current \(I_{GM}\) (on the order of 10 times \(I_{GT}\)) at \(T_j\) min is recommended to obtain good turn-on performance.
4.5 Switching Phases

The switching process of a GTO thyristor goes through four operating phases: (a) turn-on; (b) on-state; (c) turn-off; and (d) off-state.

Turn-on: A GTO has a highly interdigitated gate structure with no regenerative gate. Thus it requires a large initial gate trigger pulse. A typical turn-on gate pulse and its important parameters are shown in Fig. 4.9. Minimum and maximum values of \(I_{GM} \) can be derived from the device data sheet. A value of \(di/dt \) positioned against turn-on time is given under the device characteristics found on the data sheet [2]. The rate of rise of gate current \(di/dt \) will affect the device turn-on losses. The duration of the \(I_{GM} \) pulse should not be less than half the minimum for time given in data sheet ratings. A longer period will be required if the anode current \(di/dt \) is low such that \(I_{GM} \) is maintained until a sufficient level of anode current is established.

On-state: Once the GTO is turned on, forward gate current must be continued for the entire conduction period. Otherwise, the device will not remain in conduction during the on-state period. If large negative \(di/dt \) or anode current reversal occurs in the circuit during the on-state, then higher values of \(I_c \) may be required. However, much lower values of \(I_c \) are required when the device has heated up.

Turn-off: The turn-off performance of a GTO is greatly influenced by the characteristics of the gate turn-off circuit. Thus the characteristics of the turn-off circuit must match with the de-ice requirements. Fig. 4.10 shows the typical anode and gate currents during the turn-off. The gate turn-off process involves the extraction of the gate charge, the gate avalanche period, and the anode current decay. The amount of charge extraction is a device parameter and its value is not affected significantly by the external circuit conditions. The initial peak turn-off current and turn-off time, which are important parameters of the turning-off process, depend on the external circuit components. The device data sheet gives typical values for \(I_{GQ} \).

The turn-off circuit arrangement of a GTO is shown in Fig. 4.11. The turn-off current gain of a GTO is low, typically 6 to 15. Thus, for a GTO with a turn-off gain of 10, it will require a turn-off gate current of 10 A to turn-off an on-state
of 100 A. A charged capacitor C is normally used to provide the required turn-off gate current. Inductor L limits the turn-off di/dt of the gate current through the circuit formed by R_1, R_2, SW_1, and L. The gate circuit supply voltage V_{GS} should be selected to give the required value of V_{GQ}. The values of R_1 and R_2 should also be minimized.

Off-state period: During the off-state period, which begins after the fall of the tail current to zero, the gate should ideally remain reverse-biased. This reverse bias ensures maximum blocking capability and dv/dt rejection. The reverse bias can be obtained either by keeping SW_1 closed during the whole off-state period or via a higher impedance circuit SW_2 and R_3 provided a minimum negative voltage exits. This higher impedance circuit SW_2 and R_3 must sink the gate leakage current.

In case of a failure of the auxiliary supplies for the gate turn-off circuit, the gate may be in reverse-biased condition and the GTO may not be able to block the voltage. To ensure that the blocking voltage of the device is maintained, a minimum gate-cathode resistance (R_{GK}) should be applied as shown in Fig. 4.12. The value of R_{GK} for a given line voltage can be derived from the data sheet.

FIGURE 4.10 Anode and gate currents during turn-off (see the data sheet in Reference 2). Courtesy of Westcode.

FIGURE 4.11 Turn-off circuit (see the data sheet in Reference 2). Courtesy of Westcode.

4.6 SPICE GTO Model

A GTO may be modeled with two transistors as shown in Fig. 4.3. However, a GTO model [3] consisting of two thyristors, which are connected in parallel, yield improved on-state, turn-on and turn-off characteristics. This is shown in Fig. 4.13 with four transistors.

When the anode to cathode voltage V_{AK} is positive and there is no gate voltage, the GTO model will be in the off state like a standard thyristor. If a positive voltage (V_{AK}) is applied to the anode with respect to the cathode and no gate pulse is applied, $I_{B1} = I_{B2} = 0$ and, therefore, $I_{C1} = I_{C2} = 0$. Thus, no anode current will flow and $I_A = I_K = 0$.

When a small voltage is applied to the gate, then I_{B2} is nonzero and, therefore, both $I_{C1} = I_{C2} = 0$ are nonzero. Thus the internal circuit will conduct and there will be a current flow from the anode to the cathode.

When a negative gate pulse is applied to the GTO model, the $p-n-p$ junction near to the cathode will behave as a diode.

FIGURE 4.12 Gate-cathode resistance, R_{GK} (see the data sheet in Reference 2). Courtesy of Westcode.

FIGURE 4.13 Four-transistor GTO model. Courtesy of Westcode.
The diode will be reverse biased because the gate voltage is negative to the cathode. Therefore, the GTO will stop conduction.

When the anode-to-cathode voltage is negative, that is, the anode voltage is negative with respect to the cathode, the GTO model will act like a reverse-biased diode. This is because the p-n-p transistor will see a negative voltage at the emitter and the n-p-n transistor will see a positive voltage at the emitter. Therefore both transistors will be in the off state and hence the GTO will not conduct. The SPICE subcircuit description of the GTO model will be as follows:

4.7 Applications

Gate turn-off thyristors have many applications, including motor drives, induction heating [4], distribution lines [5], pulsed power [6], and flexible ac transmission systems [7].

Acknowledgment

The author would like to thank Mr Dinesh Chamund, Principal Engineer for Applications, Dynex Semiconductor, Doddington Road, Lincoln LN6 3LF, United Kingdom, who was invited to write this chapter and could not complete it due to his work assignment.

References

Power Bipolar Transistors

5.1 Introduction

The first transistor was created in 1948 by a team of physicists at the Bell Telephone Laboratories and soon became a semiconductor device of major importance. Before the transistor, amplification was achieved only with vacuum tubes. Although there are now integrated circuits with millions of transistors, flow and control of electrical energy still require single transistors. Therefore, power semiconductor switches constitute the heart of modern power electronics. Such devices should have larger voltage and current ratings, instant turn-on and turn-off characteristics, very low voltage drop when fully on, zero leakage current in blocking condition, enough ruggedness to switch highly inductive loads, which are measured in terms of safe operating area (SOA) and ES\(b\) (reverse-biased second breakdown), high-temperature and radiation-withstand capabilities and high reliability. The right combination of such features restricts device suitability to only certain applications. Figure 5.1 depicts those voltage and current ranges, in terms of frequency, at which where the most common power semiconductors devices can operate.

The figure actually gives an overall picture of where power semiconductors are typically applied in industries: High voltage and current ratings permit applications in large motor drives, induction heating, renewable energy inverters, HVDC converters, and static VAR compensators and active filters. By contrast, low-voltage and high-frequency applications that include switching mode power supplies, resonant converters and motion control systems and low-frequency with high-current and voltage devices are restricted to cyclo-converter-fed and multimegawatt drives [1].

Power-\(n\)pn or \(p\)np bipolar transistors used to be the traditional components for driving several of these industrial applications. However, insulated-gate bipolar-transistor (IGBT) and metal-oxide-semiconductor field-effect transition (MOSFET) technology have progressed so much that they are now viable replacements for the bipolar types. Bipolar-\(n\)pn or \(p\)np transistors still have performance areas in which they still may be used; for example, they have lower saturation voltages over their operating temperature range, but they are considerably slower, exhibiting long turn-on and turn-off times. When a bipolar transistor is used in a totem-pole circuit, the most difficult design aspects to overcome are the base drive circuitry, i.e. the required circuit for driving the base. Although bipolar transistors have lower input capacitance than those of MOSFETs and IGBTs, they are current driven. Thus, the drive circuitry must generate high and prolonged input currents.

The high input impedance of the IGBT is an advantage over its bipolar counterpart. However, input capacitance is also high. As a result, the drive circuitry must rapidly charge and discharge the input capacitor of the IGBT during the transition time. The IGBT low-saturation voltage performance is analogous to bipolar power-transistor performance, even over the operating-temperature range. The IGBT requires a \(-5/\) +10 V gate-emitter voltage transition to ensure reliable output switching.

The MOSFET gate and IGBT are similar in many areas of operation. For instance, both devices have high input impedance, are voltage-driven, and use less silicon than the

5.1 Introduction .. 63
5.2 Basic Structure and Operation.. 64
5.3 Static Characteristics... 65
5.4 Dynamic Switching Characteristics... 68
5.5 Transistor Base Drive Applications... 69
5.6 Spice Simulation of Bipolar Junction Transistors.................................... 71
5.7 BJT Applications ... 72
References .. 74
bipolar power transistor to achieve the same drive performance. Additionally, the MOSFET gate has high input capacitance, which places the same requirements on the gate-drive circuitry as the IGBT employed at that stage. The IGBTs outperform MOSFETs when it comes to conduction loss vs supply-voltage rating. The saturation voltage of MOSFETs is considerably higher and less stable over temperature than that of IGBTs. For these reasons, the insulated-gate bipolar transistor took the place of bipolar junction transistors in several applications during the 1980s. Although the IGBT is a cross between the bipolar and MOSFET transistor, with the output switching and conduction characteristics of a bipolar transistor, but voltage-controlled like a MOSFET, the early IGBT versions were prone to latch up, which had been largely eliminated by the 1980s. Another characteristic with some IGBT types is the negative temperature coefficient, which can lead to thermal runaway and makes the paralleling of devices hard to achieve. Currently, this problem is being addressed in the latest generations of IGBTs.

It is very clear that a categorization based on voltage and switching frequency provides two key parameters for determining whether a MOSFET or an IGBT is the better device in an application. However, there are still difficulties in selecting a component for use in the crossover region, which includes voltages of 250 to 1000 V and frequencies of 20 to 100 kHz. At voltages < 500 V, the BJT has been entirely replaced by MOSFET in power applications and has also been displaced at higher voltages, where new designs use IGBTs. Most regular industrial needs are in the range of 1–2 kV blocking voltages, 200–500 ampere conduction currents, and with switching speeds of 10–100 ns. Although in the last few years, new high voltage projects displaced BJTs towards IGBT, and it is expected that there will be a decline in the number of new power system designs that incorporate bipolar junction transistors, some applications for BJTs remain; in addition the huge built-up history of equipment installed in industries makes the bipolar junction transistor a good device.

5.2 Basic Structure and Operation

The bipolar junction transistor (BJT) consists of a three-region structure of n-type and p-type semiconductor materials; it can be constructed as npn as well as pnp. Figure 5.2 shows the physical structure of a planar npn bipolar junction transistor. The operation is closely related to that of a junction diode where in normal conditions the pn junction between the base and collector is forward-biased (v_{BE} > 0), causing electrons to be injected from the emitter into the base. As the base region is thin, the electrons travel across it and arrive at the reverse-biased base-collector junction (v_{BC} < 0), where there is an electric field (depletion region). Upon arrival at this junction the electrons are pulled across the depletion region and drawn into the collector. These electrons flow through the collector region and out the collector contact. Because electrons are negative carriers, their motion constitutes positive current flowing into the external collector terminal. Even though the forward-biased base-emitter junction injects holes from base to emitter, the holes do not contribute to the collector current but result in a net current flow component into the base from the external base terminal. Therefore, the emitter current is composed of these two components: electrons destined to be

![Figure 5.2](image-url)
injected across the base-emitter junction, and holes injected from the base into the emitter. The emitter current is exponentially related to the base-emitter voltage by the equation:

\[i_E = i_{EB} \left(e^{\frac{V_{BE}}{\eta V_T}} - 1 \right) \]

where \(i_E \) is the saturation current of the base-emitter junction and which is a function of the doping levels, temperature and the area of the base-emitter junction, \(V_T \) is the thermal voltage \(Kt/q \) and \(\eta \) is the emission coefficient. The electron current arriving at the collector junction can be expressed as a fraction \(\alpha \) of the total current crossing the base-emitter junction

\[i_C = \alpha i_E \]

Because the transistor is a three-terminals device, \(i_E \) is equal to \(i_C + i_B \), hence the base current can be expressed as the remaining fraction,

\[i_B = (1 - \alpha)i_E \]

The collector and base currents are thus related by the ratio

\[\frac{i_C}{i_B} = \frac{\alpha}{1 - \alpha} = \beta \]

The values of \(\alpha \) and \(\beta \) for a given transistor depend primarily on the doping densities in the base, collector and emitter regions, as well as on the device geometry. Recombination and temperature also affect the values for both parameters. A power transistor requires a large blocking voltage in the off state and a high current capability in the on state; a vertically oriented four-layer structure as shown in Fig. 5.3 is preferable because it maximizes the cross-sectional area through which the current flows, enhancing the on-state resistance and power dissipation in the device [2]. There is an intermediate collector region with moderate doping, and the emitter region is controlled so as to have a homogeneous electrical field.

Optimization of doping and base thickness are required to achieve high breakdown voltage and amplification capabilities. Power transistors have their emitters and bases interleaved to reduce parasitic ohmic resistance in the base current path, which also improves the device for second breakdown failure. The transistor is usually designed to maximize the emitter periphery per unit area of silicon, in order to achieve the highest current gain at a specific current level. In order to ensure those transistors have the greatest possible safety margin, they are designed to be able to dissipate substantial power and, thus, have low thermal resistance. It is for this reason, among others, that the chip area must be large and that the emitter periphery per unit area is sometimes not optimized. Most transistor manufacturers use aluminum metallization because it has many attractive advantages, among them easier application via vapor deposition and easier definition with photolithography. A major problem with aluminum is that only a thin layer can be applied by normal vapor-deposition techniques. Thus, when high currents are applied along the emitter fingers, a voltage drop occurs along them, and the injection efficiency on the portions of the periphery that are farthest from the emitter contact is reduced. This limits the amount of current each finger can conduct. If copper metallization is substituted for aluminum, then it is possible to lower the resistance from the emitter contact to the operating regions of the transistors (the emitter periphery).

From a circuit point of view, Eqs. (5.1)–(5.4) are used to relate the variables of the BJT input port (formed by base (B) and emitter (E)) to the output port (collector (C) and emitter (E)). The circuit symbols are shown in Fig. 5.4. Most of power electronics applications use NPN transistors because electrons move faster than holes, and therefore, NPN transistors have considerable faster commutation times.

5.3 Static Characteristics

Device static ratings determine the maximum allowable limits of current, voltage, and power dissipation. The absolute voltage limit mechanism is concerned with the avalanche in
terms of preventing thermal runaway. Forward current ratings are specified at which the junction temperature does not exceed a rated value so as to prevent leads and contacts from being evaporated. Power dissipated in a semiconductor device produces a temperature rise and is related to thermal resistance. A family of voltage-current characteristic curves is shown in Fig. 5.5. Figure 5.5a shows the base current i_B plotted as a function of the base-emitter voltage V_{BE} and Fig. 5.5b depicts the collector current i_C as a function of the collector-emitter voltage V_{CE} with i_B as the controlling variable.

Figure 5.5 shows several curves distinguished from each other by the value of the base current. The active region is defined where flat, horizontal portions of voltage-current curves show "constant" i_C current, because the collector current does not change significantly with V_{CE} for a given i_B. Those portions are used only for small signal transistors operating as linear amplifiers. On the other hand, switching power electronics systems require transistors to operate in either the saturation region where V_{CE} is small or in the cutoff region where the current is zero and the voltage is upheld by the device. A small base current drives the flow of a much larger current between collector and emitter; such gain (called beta—Eq. (5.4)) depends upon temperature, V_{CE} and i_C.

Figure 5.6 shows current gain increase with increased collector voltage; gain falls off at both high and low current levels.

High voltage BJT s typically have low current gain, and hence Darlington-connected devices, as indicated in Fig. 5.7 are commonly used. Considering gains β_1 and β_2 for each one of these transistors, the Darlington connection will have an increased gain of $\beta_1 + \beta_2 + \beta_1 \beta_2$ and diode D1 speeds up the turn-off process by allowing the base driver to remove the stored charge on the transistor bases.

Vertical-structure power transistors have an additional region of operation called quasi-saturation, indicated in the characteristics curve of Fig. 5.8. Such a feature is a consequence of the lightly doped collector drift region where the collector base junction supports a low reverse bias. If the transistor enters the hard-saturation region the on-state power dissipation is minimized; there is, however, a tradeoff—in quasi-saturation the stored charges are smaller. At high

![FIGURE 5.3 Family of current-voltage characteristic curves. (a) base-emitter input port; and (b) collector-emitter output port.](image-url)
collector currents beta gain decreases with increased temperature and with quasi-saturation operation such negative feedback allows careful device paralleling. Two mechanisms at the microelectronic level determine the fall-off in beta, namely conductivity modulation and emitter crowding. One can note that there is a region called primary breakdown due to conventional avalanche of the C-B junction and the attendant large flow of current. Here $B_{V_{SUS}}$, the limit for primary breakdown, is the maximum collector-emitter voltage that can be sustained across the transistor when it is carrying high collector current. The $B_{V_{SUS}}$ is lower than $B_{V_{CEO}}$ or $B_{V_{CBO}}$ both of which measure the transistor’s voltage standoff capability when the base current is zero or negative. The bipolar transistor has another potential failure mode called second breakdown, which shows as a precipitous drop in the collector-emitter voltage at large currents. Because the power dissipation is not uniformly spread over the device but is, instead, rather concentrated on regions, this serves to make the local gradient of temperature rise very quickly. Such thermal runaway brings hot spots that can eventually melt and recrystallize the silicon, thereby resulting in device destruction. The key to avoiding second breakdown is to: (1) keep power dissipation under control; (2) use a controlled rate of change of base current during turn-off; (3) use protective snubber circuitry; and (4) position the switching trajectory within the safe operating area (SOA) boundaries.

In order to describe the maximum values of current and voltage to which the BJT should be subjected, two diagrams are used: the forward-bias safe operating area (FBSOA) given in Fig. 5.9 and the reverse-bias safe operating area (RBSOA) shown in Fig. 5.10. In the FBSOA current I_{CM} is the maximum current of the device and there is a boundary defining the maximum thermal dissipation and a margin defining the second breakdown limitation. These regions are expanded for switching mode operation. Inductive load generates a higher peak energy at turn-off than does its resistive counter-part. It is then possible to have a secondary breakdown failure if RBSOA is exceeded. A reverse base current helps the internal operation leading to an expanded region RBSOA. The RBSOA curve shows that for voltages below V_{CEO} the safe area is independent of reverse bias voltage V_{EB} and is only limited by the device collector current, whereas above V_{CEO} the collector current must be under control, dependent upon the applied reverse-bias voltage; in addition, temperature effects derate the safe operating area. The ability of a transistor to switch high currents reliably is thus determined by its peak power-handling capabilities. This ability is dependent upon both the transistor’s current and thermal density throughout the active region. In order to optimize the safe operating area (SOA) capability, both current- and thermal density must be low. In general, it is the hot spots occurring at the weakest area of the transistor that will cause a device to fail due to second breakdown phenomena. Although a wide base width will limit the current density across the base region, good heat sinking directly under the collector will enable the transistor to withstand high peak power. When the power and heat are spread over a large silicon area, all of these destructive tendencies are held to a minimum, and the transistor will have the highest SOA capability.

When the transistor is on, one can ignore the base current losses and calculate power dissipation on the on state (conduction losses) with Eq. (5.5). Hard saturation minimizes collector-emitter voltage, which decreases on-state losses.

$$P_{ON} = I_C V_{CE(sat)} \quad (5.5)$$
5.4 Dynamic Switching Characteristics

Switching characteristics are important in defining device velocity during change from conduction (on) to blocking (off) states. Such transition velocity is of paramount importance because most of the losses are due to high frequency switching. Figure 5.11 shows typical waveforms for a resistive load. Index "r" refers to the rising time (from 10 to 90% of maximum value); for example, \(t_{ri} \) is the current rise time and depends upon base current. The falling time is indexed by "f"; the parameter \(t_{fo} \) is the current falling time, that is, when the transistor is blocking such time corresponds to crossing from the saturation to the cutoff state. In order to improve \(t_{fo} \), the base current for blocking must be negative and the device must be kept in quasi-saturation so as to minimize stored charges. The delay time is denoted by \(t_d \) corresponding to the time to discharge the capacitance of junction base-emitter, which time can be reduced with a larger current base with high slope. Storage time \((t_f) \) is a very important parameter for BJT transistors, it is the time required to neutralize the carriers stored in the collector and the base. Storage time and switching losses are key points when dealing with bipolar power transistors. Switching losses occur at both turn-on and turn-off. For high-frequency operation the rising and falling times for voltage and current transitions play an important role as indicated by Fig. 5.12.

A typical inductive load transition is indicated in Fig. 5.13. The figure indicates a turn-off transition. Current and voltage are interchanged at turn-on and an approximation based upon straight line switching intervals (resistive load) gives the switching losses calculated using Eq. (5.6).

\[
P_S = \frac{V_s I_M}{2} t_f
\]

where \(\tau \) is the duration of the switching interval and \(V_s \) and \(I_M \) are the maximum voltage and current levels as shown in Fig. 5.14.

Most advantageous operation is achieved when fast transitions are optimized. Such a requirement minimizes switching losses. Therefore, a good bipolar drive circuit influences significantly the transistor performance. A base drive circuit should provide a high forward base drive current (\(I_{bb1} \)) as indicated in Fig. 5.14 if power semiconductor turn-on is to be ensured quickly. Base drive current should keep the BJT fully saturated so as to minimize forward conduction losses, but a level \(I_{bb2} \) would maintain the transistor in quasi-saturation, which avoids an excess of charges in the base. Controllable

FIGURE 5.11 Resistive load dynamic response.

FIGURE 5.12 Inductive load switching characteristics.

FIGURE 5.13 Turn-off voltage and current switching transition. (a) inductive load; and (b) resistive load.
slope and reverse current I_{BR} sweep out stored charges in the transistor base, speeding up device turn-off.

5.5 Transistor Base Drive Applications

A plethora of circuits has been suggested to command transistors successfully for operation in power electronics switching systems [3]. Such base drive circuits try to satisfy the following requirements: supply the right collector current; adapt the base current to the collector current; and extract a reverse current from base to speed up device blocking. A good base driver reduces the commutation times and total losses, thus increasing efficiency and operating frequency. Depending upon the grounding requirements between the control and the power circuits, the base drive might be either an isolated or nonisolated type. Figure 5.15 shows a nonisolated circuit. When T_1 is switched on, T_2 is driven and diode D_1 is forward-biased, which provides a reverse bias and keeps T_3 off. The base current I_B is positive and saturates the power transistor T_P. When T_1 is switched off, T_3 switches on due to the negative path provided by R_3 and $-V_{CC}$, providing a negative current for switching off the power transistor T_P.

When a negative power supply is not provided for the base drive, a simple circuit like Fig. 5.16 can be used in low-power applications (stepper motors, small dc-dc converters, relays, pulsed circuits). When the input signal is high T_1 switches on and a positive current goes to T_P, thus keeping the capacitor charged with the Zener voltage; and when the input signal falls, T_2 provides a path for the discharge of the capacitor, which imposes a pulsed negative current from the base-emitter junction of T_P.

A combination of large reverse base drive and antisaturation techniques may be used to reduce storage time to almost zero. A circuit called Baker’s clamp may be employed as illustrated in Fig. 5.17. When the transistor is on its base it is two diode drops below the input. Assuming that diodes D_2 and D_3 have a forward bias voltage of $\approx 0.7 \text{ V}$, then the base will be 1.4 V below the input terminal. Due to diode D_1 the collector is one diode drop, or 0.7 V below the input. Therefore, the collector will always be more positive than the base by 0.7 V, staying out of saturation; further because collector voltage increases the gain β also increases slightly. Diode D_4 provides a negative path for the reverse base current. The input base current can be supplied by a driver circuit similar to the one discussed in Fig. 5.15.

Several situations require ground isolation, off-line operation, and floating transistor topology. In addition, safety needs may require an isolated base drive circuit. Numerous circuits have been demonstrated in switching power supplies to isolated topologies, usually integrating base drive requirements with their power transformers. Isolated base drive
circuits may provide either constant current or proportional current excitation. A very popular base drive circuit for floating switching transistor is shown in Fig. 5.18. When a positive voltage is impressed on the secondary winding (V_s) of T_{R1}, a positive current flows into the base of the power transistor T_P and it switches on (resistor R_1 limits the base current). Capacitor C_1 is charged by ($V_s - V_{D1} - V_{BE}$) and T_1 is kept blocked because diode D_1 reverse biases the T_1 base-emitter. When V_s is zipped off, the capacitor voltage V_C brings the emitter of T_1 to a negative potential in respect to its base. Therefore, T_1 is excited so as to switch on and start pulling a reverse current from the T_P base. Another very effective circuit is shown in Fig. 5.19 with a minimum number of components. The base transformer has a tertiary winding, which uses the energy stored in the transformer to generate the reverse base current during the turn-off command. Other configurations are also possible by adding to the isolated circuits the Baker clamp diodes, or Zener diodes with paralleled capacitors.

Sophisticated isolated base drive circuits can be used to provide proportional base drive currents where it is possible to control the value of β; by keeping it constant for all collector currents shorter storage time results. Figure 5.20 shows one possible way to realize a proportional base drive circuit. When transistor T_1 turns on, the transformer T_{R1} is in negative saturation and power transistor T_P is off. During the time that T_1 is on a current flows through winding N_1, limited by resistor R_1, storing energy in the transformer and holding it at saturation. When transistor T_1 turns off, the energy stored in N_1 is transferred to winding N_4, pulling the core from negative to positive saturation. Windings N_2 and N_4 will withstand as a current source, transistor T_P will stay on, and gain β will be imposed by the turns ratio given by:

$$\beta = \frac{N_4}{N_2} \quad (5.7)$$

To use the proportional drive given in Fig. 5.20 careful design of the transformer must be done in order to have the flux balanced, which will then keep the core under saturation. Transistor gain must be somewhat higher than the value imposed by the transformer turns ratio, which requires cautious device matching.

The most critical portion of the switching cycle occurs during transistor turn-off because normally reverse-base current is made very large in order to minimize storage time and such a condition may avalanche the base-emitter junction and lead to destruction. There are two options to prevent this from happening: turning off the transistor at low values of collector-emitter voltage (which is not practical in most of the applications), or reducing collector current with rising collector voltage, implemented by RC protective networks called snubbers. Therefore, an RC snubber network can be used to divert the collector current during the turn-off, which then improves the reverse bias safe operating area; in addition, the snubber circuit dissipates a fair amount of switching power and this relieves the transistor. Figure 5.21 shows a turn-off snubber network; when the power transistor is off capacitor C is charged through diode $D1$. Such collector current flows temporarily into the capacitor as the collector-voltage rises; as the power transistor turns on, the capacitor discharges through the resistor R back into the transistor.
It is not possible to fully develop all aspects of simulation of BJT circuits. Before giving an example, some comments are necessary regarding modeling and simulation of bipolar junction transistor circuits. There are several types of commercial circuit simulation programs available on the market, extending from a set of functional elements (passive components, voltage controlled and current sources, semiconductors) which can be used to model devices, to other programs that have the possibility of implementing algorithm relationships. Those streams are called subcircuit (building auxiliary circuits around a SPICE primitive) and mathematical (deriving models from internal device physics) methods. Simulators can solve circuit equations exactly, giving models for the nonlinear transistors, and predict the analog behavior of the node voltages and currents in continuous time. They are costly in computer time and such programs have not been written normally to serve the needs of power electronic circuit design but rather they are used to design low-power and low-voltage electronic circuits. Therefore, one has to decide which approach should be taken for incorporating BJT power transistor modeling, and a trade-off between accuracy and simplicity must be considered. If precise transistor modeling is required, subcircuit-oriented programs should be used. On the other hand, when simulation of complex power electronic system structures or novel power electronic topologies are devised, switch modeling should be rather simple, (which can be accomplished by taking into consideration fundamental switching operations) and a mathematically oriented simulation program should be used.

5.6 SPICE Simulation of Bipolar Junction Transistors

A general-purpose circuit program that can be applied to simulate electronic and electrical circuits and predict circuit behavior, SPICE was originally developed at the Electronics Research Laboratory of the University of California, Berkeley (1975). The name stands for simulation program for integrated circuits emphasis. A circuit must be specified in terms of element names, element values, nodes, variable parameters, and sources. Several types of circuit analysis are possible using SPICE:

- nonlinear dc analysis — calculates dc transference;
- nonlinear transient analysis — calculates signals as a function of time;
- linear ac analysis — computes a Bode plot of output as a function of frequency;
- noise analysis;
- sensitivity analysis;
- distortion analysis;
- Fourier analysis; and
- Monte-Carlo analysis.

PSpice is a commercial version which has analog and digital libraries of standard components such as operational amplifiers, digital gates, and flip-flops. This makes it a useful tool for a wide range of analog and digital applications. An input file, called source file, consists of three parts: (1) data statements, with description of the components and the interconnections; (2) control statements, which tell SPICE what type of analysis to perform on the circuit; and (3) output statements, with specifications of which outputs are to be printed or plotted. Two other statements are required — the title statement and the end statement. The title statement is the first line and can contain any information, while the end statement is always .END. This statement must be a line by itself, followed by carriage return. In addition, there are also comment statements, which must begin with an asterisk (*) and are ignored by SPICE. There are several model equations for bipolar junction transistors.

The SPICE system has built-in models for semiconductor devices, and the user only needs to specify the pertinent model parameter values. The model for the BJT is based on the integral-charge model of Gummel and Poon [4]. However, if the Gummel-Poon parameters are not specified, the model reduces to the piecewise-linear Ebers-Moll model as depicted in Fig. 5.22. In either case, charge-storage effects, ohmic resistances, and a current-dependent output conductance may be included. The forward gain characteristics are defined by the parameters IS and BE, the reverse characteristics by IS and BR. Three ohmic resistances RB, RC, and RE are also included. The two diodes are modelled by voltage sources and experimental Shockley equations can be transformed into logarithmic ones. A set of device model parameters is defined on a separate MODEL card and assigned a unique model name. The device element cards in SPICE then reference the model name. This scheme lessens the need to specify all of the model parameters on each device element card. Parameter values are defined by appending the parameter name, as given here for each model type, followed by an equal sign and the parameter value. Model parameters not given a value are assigned the default values given here for each model type.
As an example, the model parameters for the 2N2222A NPN transistor are given in what follows:

```
.DEVICE Q2N222A NPN (IS=14.34F XTI=3.050 FEG=1.116 BF=255.9 NE=1.307 ISE=14.34F IKF=.2847 XTB=1.550 BR=6.092 NC=2 ISC=0 IKR=0 RC=1 CJE=7.306P MJC=.3416 VJC=.75 FC=.5 CJE=22.01P MJE=.377 VJE=.75 TR=46.91N TF=4.111P ITF=.6 VTF=1.7 XTF=3 RB=10)
```

Figure 5.23 shows a BJT buck chopper. The dc input voltage is 12 V, load resistance R is 5 Ω, filter inductance L is 145.8 μH and the filter capacitance C is 200 mF. The chopping frequency is 25 kHz and the duty cycle of the chopper is 42% as indicated by the control voltage statement (VC). The listing that follows plots the instantaneous load current (Io), the input current (Ii), the diode voltage (VD), the output voltage (VC) and calculates the Fourier coefficients of the input current (Ii). This listing for the careful reader as it provides more details and enhancements that are useful when SPICE is chosen for simulations as shown below.

5.7 BJT Applications

Bipolar junction power transistors are applied to a variety of power electronic functions, switching mode power supplies, dc motor inverters, PWM inverters [5], and many other functions too numerous to name. To conclude, three applications are illustrated.

A flyback converter is given in Fig. 5.24. The switching transistor is required to withstand peak collector voltage at turn-off and peak collector currents at turn-on. In order to limit the collector voltage to a safe value, the duty cycle must
be kept relatively low, normally \(<50\%\), that is, \(\delta < 0.5\). In practice, the duty-cycle is taken at \(\approx 0.4\), which limits the peak collector. A second design factor the transistor must meet is the working collector current at turn-on, dependent on the primary transformer-choke peak current, the primary-to-
secondary turns ratio, and the output load current. When the transistor turns on, the primary current builds up in the primary winding and thus stores energy, as the transistor turns off, the diode at the secondary winding is forward biasing, which releases the stored energy into the output capacitor and

![Flyback converter diagram](image1)

![Isolated forward converter diagram](image2)

FIGURE 5.24 Flyback converter.

FIGURE 5.25 Isolated forward converter.
load. Such a transformer operating as a coupled inductor is actually defined as a transformer-choke. The transformer-choke of the flyback converter must be designed carefully so as to avoid saturation because the operation is unidirectional on the B-H characteristic curve. Therefore, a core with a relatively large volume and air gap must be used. An advantage of the flyback circuit is the simplicity by which a multiple output switching power supply may be realized. This is because the isolation element acts as a common choke to all outputs and thus only a diode and a capacitor are needed for an extra output voltage.

Figure 5.25 shows the basic forward converter and its associated waveforms. The isolation element in the forward converter is a pure transformer that should not store energy and, therefore, a second inductive element \(L \) is required at the output for proper and efficient energy transfer. Notice that the primary and secondary windings of the transformer have the same polarity, that is, the dots are at the same winding ends. When the transistor turns on, current builds up in the primary winding. Because of the same polarity of the transformer secondary winding, such energy is forward transferred to the output and also stores in inductor \(L \) through diode \(D_2 \), which is forward-biased. When the transistor turns off, the transformer winding voltage reverses, back-biasing diode \(D_2 \), and the flywheel diode \(D_3 \) is forward-biased, conducting currents in the output loop and delivering energy to the load through inductor \(L \). The tertiary winding and diode \(D \) provide transformer demagnetisation by returning the transformer magnetic energy into the output dc bus. It should be noted that the duty cycle of the switch \(b \) must be kept < 50% so that when the transformer voltage is clamped through the tertiary winding, the integral of the volt-seconds between the input voltage and the clamping level balances to zero. Duty cycles > 50%, that is, \(\delta > 0.5 \), will upset the volt-seconds balance, driving the transformer into saturation, which in turn produces high collector current spikes that may destroy the switching transistor. Although the clamping action of the tertiary winding and the diode limit the transistor peak collector voltage to the dc input, care must be taken during construction to couple the tertiary winding tightly to the primary (bifilar wound) to eliminate voltage spikes caused by leakage inductance.

Chopper drives are connected between a fixed-voltage dc source and a dc motor to vary the armature voltage. In addition to armature voltage control, a dc chopper can provide regenerative braking of the motors and will return energy back to the supply. This energy-saving feature is desirable for transportation systems such as mass rapid transit ones (MRT) and chopper drives are also used in battery electric vehicles. A dc motor can be operated in one of the four quadrants by controlling the armature of field voltages (or currents). It is often required that the armature or field terminals be reversed in order to operate the motor in the desired quadrant. Figure 5.26 shows a circuit arrangement of a chopper-fed dc separately excited motor. This is a one-quadrant drive and the waveforms for the armature voltage, load current, and input current are also shown. By varying the duty cycle, the power flow to the motor (and speed) can be controlled.

References
6.1 Introduction

This chapter gives an overview of power MOSFET semiconductor switching devices. Detailed discussion of the physical structure, fabrication and physical behavior of the device and packaging is beyond the scope of this chapter. The emphasis here will be on the terminal i-v switching characteristics of the available device, turn-on and turn-off switching characteristics, PSpice modeling and its current voltage and switching limits. Even though, most of today's available semiconductor power devices are made of silicon or germanium materials, other materials such as gallium arsenide, diamond and silicon carbide are currently being tested.

One of the main contributions that led to the growth of the power electronics field has been the unprecedented advancement in semiconductor technology, especially with respect to switching speed and power handling capabilities. The area of power electronics started by the introduction of the silicon controlled rectifier (SCR) in 1958. Since then, the field has grown in parallel with the growth of the power semiconductor device technology. In fact, the history of power electronics is very much connected to the development of switching devices and it emerged as a separate discipline when high-power and MOSFET devices were introduced in the 1960s and 1970s. Since then, the introduction of new devices has been accompanied by dramatic improvement in power rating and switching performance. Because of their functional importance, drive complexity, fragility, and cost, the power electronic design engineer must be equipped with a thorough understanding of the device operation, limitation, drawbacks, and related reliability and efficiency issues.

In the 1980s, the development of power semiconductor devices took an important turn when new process technology was developed that allowed integration of MOS and bipolar junction transistor (BJT) technologies on the same chip. Thus far, two devices using this new technology have been introduced: insulated bipolar transition (IGBT) and MOS-controlled thyristor (MCT). Many integrated circuit (IC) processing methods as well as equipment have been adapted for the development of power devices. However, unlike micro-electronic ICs, which process information, power device ICs process power and so their packaging and processing techniques are quite different. Power semiconductor devices represent the "heart" of modern power electronics, with two major desirable characteristics of power semiconductor devices guiding their development:

1. switching speed (turn-on and turn-off times); and
2. power handling capabilities (voltage blocking and current carrying capabilities).

Improvements in both semiconductor processing technology and manufacturing and packaging techniques have allowed power semiconductor development for high-voltage and high current ratings and fast turn-on and turn-off characteristics.
Today, switching devices are manufactured with amazing power handling capabilities and switching speeds as will be shown later. The availability of different devices with different switching speeds, power handling capabilities, size, cost etc., makes it possible to cover many power electronics applications. As a result, trade-offs are made when it comes to selecting power devices.

6.2 The Need for Switching in Power Electronic Circuits

As already stated, the heart of any power electronic circuit is its semiconductor-switching network. The question arises here as to whether we have to use switches to perform electrical power conversion from the source to the load. The answer, of course, is no, as there are many circuits that can perform energy conversion without switches, including linear regulators and power amplifiers. However, the need to use semiconductor devices to perform conversion functions is very much related to converter efficiency. In power electronic circuits, the semiconductor devices are generally operated as switches, that is, either in the on-state or the off-state. This is unlike the case for power amplifiers and linear regulators where semiconductor devices operate in the linear mode. As a result, a very large amount of energy is lost within the power circuit before the processed energy reaches the output. Semiconductor switching devices are used in power electronic circuits because of their ability to control and manipulate very large amounts of power from the input to the output with a relatively very low power dissipation in the switching device. Their use helps to create a very highly efficient power electronic system.

Efficiency is considered an important figure of merit and has significant implications for overall system performance. Low efficiency power systems, large amounts of power are dissipated in the form of heat, which results in one or more of the following implications:

1. Cost of energy increases due to increased consumption.
2. Additional design complications might be imposed, especially regarding the design of device heat sinks.
3. Additional components such as heat sinks increase cost, size and weight of the system, resulting in low-power density.
4. High-power dissipation forces the switch to operate at low switching frequency, resulting in limited bandwidth, slow response, and most important, the size and weight of magnetic components (inductors and transformers) and capacitors remain large. Therefore, it is always desired to operate switches at very high frequencies. However, we will show later that as the switching frequency increases, the average switching power dissipation increases. Hence, a trade-off must be made between reduced size, weight and cost of components versus reduced switching power dissipation, which means inexpensive low switching frequency devices.
5. Reduced component and device reliability.

For more than 30 years, it has been shown that switching (mechanical or electrical) is the best possible way to achieve high efficiency. However, unlike mechanical switches, electronic switches are far more superior because of their speed and power handling capabilities as well as reliability.

We should note that the advantages of using switches do not come without a cost. Because of the nature of switch currents and voltages (square waveforms), high-order harmonics are normally generated in the system. To reduce these harmonics, additional input and output filters are normally added to the system. Moreover, depending on the device type and power electronic circuit topology used, driver circuit control and circuit protection can significantly increase both the complexity of the system and its cost.

Example 6.1. The purpose of this example is to investigate the efficiency of four different power circuits whose functions are to take in power from 24-V dc source and deliver a 12-V dc output to a 6-Ω resistive load. In other words, these circuits serve as a dc transformer with a ratio of 2:1. The four circuits shown in Fig. 6.1a,b,c,d represent the voltage divider circuit, Zener regulator, transistor linear regulator, and switching circuit, respectively. The objective is to calculate the efficiency of these four power electronic circuits.

Solution 6.1. Voltage divider dc regulator: The first circuit, the simplest, forms a voltage divider with \(R = R_L = 6 \, \Omega \) and \(V_o = 12 \, V \). The efficiency defined as the ratio of the average load power \(P_L \) to the average input power, \(P_{in} \)

\[
\eta = \frac{P_L}{P_{in}} = \frac{R_L}{R_L + R} \, \% = 50\%
\]

In fact, efficiency is simply \(V_o/V_{in} \, \% \). As the output voltage becomes smaller, the efficiency decreases proportionally.

Zener dc Regulator: Since the desired output is 12 V, we select a Zener diode with Zener breakdown \(V_Z = 12 \, V \). Assume the Zener diode has the \(i-v \) characteristic shown in Fig. 6.1(e); as \(R_L = 6 \, \Omega \), the load current \(I_L \), is 2 A. Then we calculate \(R \) for \(I_Z = 0.2 \, A \) (10% of the load current). This results in \(R = 5.27 \, \Omega \). The input power is \(P_{in} = 2.2 \, A \times 24 \, V = 52.8 \, W \) and the output power is
The efficiency of the circuit is given by
\[\eta = \frac{24\text{ W}}{52.8\text{ W}} = 45.5\% \]

Transistor dc Regulator: It is clear from Fig. 6.1c that for \(V_o = 12\text{ V} \), the collector emitter voltage must be \(\approx 12\text{ V} \). Hence, the control circuit must provide base current \(I_B \) to put the transistor in the active mode with \(V_{CE} \approx 12\text{ V} \). As the load current is 2 A, then collector current is approximately 2 A (assume small \(I_C \)). The total power dissipated in the transistor can be approximated by the following equation:
\[P_{\text{diss}} = V_{CE}I_C + V_{BE}I_B \approx V_{CE}I_C \approx 12 \times 2 = 24\text{ W} \]

Therefore, the efficiency of the circuit is 50%.

Switching dc Regulator: Let us consider the switching circuit of Fig. 6.1d by assuming the switch is ideal and is periodically turned on and off in Fig. 6.1f. The output voltage waveform is shown in Fig. 6.1f. Although the output voltage is not constant or pure dc, its average value is given by
\[V_{o,\text{ave}} = \frac{1}{T} \int_0^T V_{in}dt = V_{in}D \]

where \(D \) is the duty ratio and it equals the ratio of the on-time to the switching period. For \(V_{o,\text{ave}} = 12\text{ V} \), we set \(D = 0.5 \), that is, the switch has a duty cycle of 0.5 or 50%. Here the average output power is 48 W and the average input power is also 48 W, resulting in 100% efficiency! This is of course because we assumed that the switch is ideal. However, if we assume that a BJT switch is used in the aforementioned circuit with \(V_{CE}\text{-sat} = 1\text{ V} \) and \(I_B \) is small, then the average power loss across the switch is approximately 2 W, which creates an overall efficiency of 96%. Of course, the switching circuit given in this example is over simplified because the switch requires additional driving circuitry that was not shown, and which also dissipates some of the power. However, the example illustrates that higher efficiency can be obtained by switching to a power electronic circuit as compared to the efficiency obtained from a linear power electronic circuit. Further, the difference between the linear circuit in Fig. 6.1b and 6.1c and the switched circuit of Fig. 6.1d is that the power delivered to the load in the latter case pulsates between zero and 96 W. If the application calls for constant power delivery with little output voltage ripple, then an LC filter must be added to smooth out the output voltage.

A final observation is required on what is known as load and line regulation. Line regulation is defined as the
ratio between the change in output voltage ΔV_o, with respect to the change in the input voltage ΔV_{in}. These are very important parameters in power electronics because the dc input voltage is obtained from a rectified line voltage that normally changes by $\pm 20\%$. Therefore, any off-line power electronics circuit must have a limited or specified range of line regulation. If we assume that the input voltage in Fig. 6.1a,b is changed by 2 V, that is $\Delta V_{in} = 2$ V, and with R_L unchanged, the corresponding change in the output voltage ΔV_o is 1 V and 0.55 V, respectively. This is considered very poor line regulation. Figure 6.1c,d have much better line and load regulations because the closed-loop control compensates for the line and load variations.

6.3 General Switching Characteristics

6.3.1 The Ideal Switch

It is always desirable to have power switches perform as close as possible to the ideal case. For a semiconductor device to operate as an ideal switch, it must possess the following features:

1. no limit on the amount of current (known as forward or reverse current) the device can carry when in the conduction state (on-state);
2. No limit on the amount of device-voltage (known as forward- or reverse-blocking voltage) when the device is in the nonconduction state — off-state;
3. zero on-state voltage drop when in the conduction state;
4. infinite off-state resistance, that is, zero leakage current when in the nonconduction state; and
5. no limit on the operating speed of the device when a state is changed, that is, zero rise and fall times.

The switching waveforms for an ideal switch are shown in Fig. 6.2, where i_{sw} and v_{sw} are the current through and the voltage across the switch, respectively.

During switching and conduction periods the power loss is zero, resulting in a 100% efficiency; with no switching delays, an infinite operating frequency can be achieved. In short, an ideal switch has infinite speed, unlimited power handling capabilities, and 100% efficiency. It must be noted that it is not surprising to find semiconductor-switching devices that for all practical purposes can almost perform as ideal switches for number of applications.

6.3.2 The Practical Switch

The practical switch has the following switching and conduction characteristics:

1. Limited power handling capabilities, that is, limited conduction current when the switch is in the on-state, and limited blocking voltage when the switch is in the off-state.
2. Limited switching speed caused by the finite turn-on and turn-off times. This limits the maximum operating frequency of the device.
3. Finite on-state and off-state resistances, that is, forward voltage drop exists when in the on-state, and reverse current flow (leakage) exists when in the off-state.
4. Because of characteristics 2 and 3, the practical switch experiences power losses in the on- and off-states (known as conduction loss), and during switching transitions (known as switching loss).

The typical switching waveforms of a practical switch are shown in Fig. 6.3a.

The average switching power and conduction power losses can be evaluated from these waveforms. We should point out that the exact practical switching waveforms vary from one device to another device, but Fig. 6.3a gives a reasonably good representation. Moreover, other issues such as temperature dependence, power gain, surge capacity, and over-voltage capacity must be considered when addressing specific devices for specific applications. A useful plot that illustrates how switching takes place from on to off and vice versa is what is called switching trajectory, which is simply a plot of i_{sw} vs v_{sw}.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{ideal_switching_waveforms}
\caption{Ideal switching current, voltage and power waveforms.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{switching_trajectory}
\caption{Switching trajectory graph.}
\end{figure}
Figure 3(b) shows several switching trajectories for the ideal and practical cases under resistive loads.

EXAMPLE 6.2. Consider a linear approximation of Fig. 6.3a as shown in Fig. 6.4a: (a) give a possible circuit implementation using a power switch whose switching waveforms are shown in Fig. 6.4a; (b) derive the expressions for the instantaneous switching and conduction power losses and sketch them; (c) determine the total average power dissipated in the circuit during one switching frequency; and (d) determine the maximum power.

SOLUTION 6.2. (a) First let us assume that the turn-on time t_{on} and turn-off time t_{off}, the conduction voltage V_{ON}, and the leakage current I_{OFF}, are part of the switching characteristics of the switching device and have nothing to do with circuit topology.

When the switch is off, the blocking voltage across the switch is V_{OFF}, which can be represented as a dc voltage source of value V_{OFF} reflected somehow across the switch during the off-state. When the switch is on, the current through the switch equals I_{ON}, and hence a dc current is needed in series with the switch when it is in the on-state. This suggests that when the switch turns off again, the current in series with the switch must be diverted somewhere else (this process is known as

Figure 3(b) shows several switching trajectories for the ideal and practical cases under resistive loads.
(commutation). As a result, a second switch is needed to carry the main current from the switch being investigated when it is switched off. However, as \(i_{sw} \) and \(t_{sw} \) are linearly related as shown in Fig. 6.4, a resistor will do the trick and a second switch is not needed. Figure 6.4 shows a one-switch implementation with \(S \) the switch and \(R \) the switched-load.

(b) The instantaneous current and voltage waveforms during the transition and conduction times are given as follows:

\[
i_{sw}(t) = \begin{cases} \frac{t}{t_{ON}}(I_{ON} - I_{OFF}) + I_{OFF} & 0 \leq t \leq t_{ON} \\ I_{ON} & t_{ON} \leq t \leq T_s - t_{OFF} \\ -\frac{t - T_s}{t_{OFF}}(I_{ON} - I_{OFF}) + I_{OFF} & T_s - t_{OFF} \leq t \leq T_s \end{cases}
\]

\[
V_{sw}(t) = \begin{cases} -\frac{V_{OFF} - V_{ON}}{t_{ON}}(t - t_{ON}) + V_{ON} & 0 \leq t \leq t_{ON} \\ V_{ON} & t_{ON} \leq t \leq T_s - t_{OFF} \\ \frac{V_{OFF} - V_{ON}}{t_{OFF}}(t - (T_s - t_{OFF}))(t - T_s) + V_{ON} & T_s - t_{OFF} \leq t \leq T_s \end{cases}
\]

It can be shown that if we assume \(I_{ON} \gg I_{OFF} \) and \(V_{OFF} \gg V_{ON} \), then the instantaneous power \(p(t) = i_{sw}v_{sw} \) can be given as follows:

\[
p(t) = \begin{cases} -\frac{V_{OFF}I_{ON}}{t_{ON}^2}(t - t_{ON})t & 0 \leq t \leq t_{ON} \\ V_{ON}I_{ON} & t_{ON} \leq t \leq T_s - t_{OFF} \\ -\frac{V_{OFF}I_{ON}}{t_{OFF}^2}(t = (T_s - t_{OFF}))(t - T_s) & T_s - t_{OFF} \leq t \leq T_s \end{cases}
\]

Figure 6.4(c) shows a plot of the instantaneous power where the maximum power during turn-on and turn-off is \(V_{OFF}I_{ON}/4 \).

(c) The total average dissipated power is given by

\[
P_{ave} = \frac{1}{T_s} \int_0^{T_s} p(t) dt = \frac{1}{T_s} \left[\int_0^{t_{ON}} -\frac{V_{OFF}I_{ON}}{t_{ON}^2}(t - t_{ON})t dt + \int_{t_{ON}}^{T_s} V_{ON}I_{ON} dt + \int_{T_s - t_{OFF}}^{T_s} -\frac{V_{OFF}I_{ON}}{t_{OFF}^2}(t - (T_s - t_{OFF}))(t - T_s) dt \right]
\]

The evaluation of the preceding integral gives

\[
P_{ave} = \frac{V_{OFF}I_{ON}}{T_s} \left(\frac{t_{ON} + t_{OFF}}{6} + \frac{V_{ON}I_{ON}}{T_s} (T_s - t_{OFF} - t_{ON}) \right)
\]

The first expression represents the total switching loss and the second represents the total conduction loss over one switching cycle. We notice that as frequency increases, average power increases linearly. In addition, power dissipation increases with an increase in the forward conduction current and the reverse-blocking voltage.

(d) The maximum power occurs at the time when the first derivative of \(p(t) \) during switching is set to zero, that is,

\[
\frac{dp(t)}{dt} \bigg| _{t=t_{max}} = 0
\]

Solving the preceding equation for \(t_{max} \) we obtain values at turn-on and turn-off, respectively,

\[
t_{max} = \frac{T_s}{2}
\]

\[
t_{max} = T - \frac{T_{off}}{2}
\]

Solving for maximum power, we obtain

\[
P_{max} = \frac{V_{off}I_{on}}{4}
\]

6.4 The Power MOSFET

Unlike the bipolar junction transistor (BJT), the MOSFET device belongs to the unipolar device family, because it uses only the majority carriers in conduction. The development of metal-oxide-semiconductor (MOS) technology for microelectronic circuits opened the way for development of the power metal oxide semiconductor field effect transistor (MOSFET) device in 1975. Selecting the most appropriate device for a given application is not an easy task because it requires knowledge about the device characteristics, their unique features, innovation, and engineering design experience. Unlike low-power (signal devices), high-power devices are more complicated in structure, driver design, and their operational i-v characteristics are difficult to understand. This knowledge is very important for power electronics engineers when designing circuits that will make these devices close to ideal. The device symbol for a p- and n-channel enhancement and depletion types are shown in Fig. 6.5. Figure 6.6 shows the i-v characteristics for the n-channel enhancement-type MOSFET. It is the fastest power switching device, with switching frequency >MHz and with voltage power ratings up to 600 V and current rating as high as 40 A. Regions of operations for MOSFET will be studied.
6.5 MOSFET Structure

Unlike the lateral channel MOSFET devices used in much of the IC technology in which the gate, source and drain terminals are located at the same surface of the silicon wafer, power MOSFETs use vertical channel structure in order to increase the device power rating [1]. In the vertical channel structure, the source and drain are on opposite side of the silicon wafer. Figure 6.7a shows a vertical cross-sectional view for a power MOSFET. Figure 6.7b shows a more simplified representation. There are several discrete types of the vertical structure power MOSFET available commercially today, including V-MOSFET, U-MOSFET, D-MOSFET, and S-MOSFET [1, 2]. The p-n junction between the p-region (also referred to as body or bulk region) and the n-drift region provide the forward voltage blocking capabilities. The source metal contact is connected directly to the p-region through a break in the n-source region in order to allow for a fixed potential to the p-region during normal device operation. When the gate and source terminal are set to the same potential (VGS = 0), no channel is established in the p-region, that is, the channel region remains unmodulated. The lower doping in the n-drift region is needed in order to achieve higher drain voltage blocking capabilities. For the drain-source current ID to flow, a conductive path must be established between the n-and n-regions through the p-diffusion region.

6.5.1 On-State Resistance

When the MOSFET is in the on-state (triode region), the channel of the device behaves like a constant resistance \(R_{DS(on)} \) that is linearly proportional to the change between \(V_{DS} \) and \(I_D \) as given by the following relation:

\[
R_{DS(on)} = \frac{\partial V_{DS}}{\partial I_D} \bigg|_{I_{DS(on)}}
\]

(6.1)

The total conduction (on-state) power loss for a given MOSFET with forward current \(I_D \) and on-resistance \(R_{DS(on)} \) is given by

\[
P_{on.diss} = I_D^2 R_{DS(on)}
\]

(6.2)
The value of $R_{DS(on)}$ can be significant and varies between tens of milliohms and a few ohms for low-voltage and high-voltage MOSFETs, respectively. The on-state resistance is an important data sheet parameter, because it determines the forward voltage drop across the device and its total power losses.

Unlike the current-controlled bipolar device, which requires base current to allow the current to flow in the collector, the power MOSFET device is a voltage-controlled unipolar device and requires only a small amount of input (gate) current. As a result, it requires less drive power than the BJT. However, it is a nonlatching current like the BJT, that is, a gate source voltage must be maintained. Moreover, as only majority carriers contribute to the current flow, MOSFETs surpass all other devices in switching speed, which switching speeds can exceed a few megahertz. Comparing the BJT and the MOSFET, the BJT has greater power handling capabilities and smaller switching speed, while the MOSFET device has less power handling capabilities and relatively fast switching speed. The MOSFET device has a higher on-state resistor than the bipolar transistor. Another difference is that the BJT parameters are more sensitive to junction temperature when compared to the MOSFET and, unlike the BJT, MOSFET devices do not suffer from second breakdown voltages and sharing current in parallel devices is possible.

6.5.2 Internal Body Diode

The modern power MOSFET has an internal diode called a body diode connected between the source and the drain as shown in Fig. 6.8a. This diode provides a reverse direction for the drain current, allowing a bidirectional switch implementation. Even though the MOSFET body diode has adequate current and switching speed ratings, in some power electronic applications that require the use of ultra-fast diodes, an external fast recovery diode is added in antiparallel fashion after blocking the body diode by a slow recovery diode as shown in Fig. 6.8b.

6.5.3 Internal Capacitors

Another important parameter that affect the MOSFET switching behavior are the parasitic capacitances between the device’s three terminals, namely, gate-to-source (C_{gs}), gate-to-drain (C_{gd}) and drain-to-source (C_{ds}) capacitances as shown in Fig. 6.9a. The values of these capacitances are nonlinear and a function
of device structure, geometry, and bias voltages. During turn-on, capacitors C_{gd} and C_{gs} must be charged through the gate, hence, the design of the gate control circuit must take into consideration the variation in these capacitances. The largest variation occurs in the gate-to-drain capacitance as the drain-to-gate voltage varies. The MOSFET parasitic capacitance is given in terms of the device data sheet parameters C_{iss}, C_{oss}, and C_{rss} as follows:

$$
C_{gd} = C_{rss}
$$

$$
C_{gs} = C_{iss} - C_{rss}
$$

$$
C_{ds} = C_{oss} - C_{rss}
$$

where C_{rss} is the small-signal reverse transfer capacitance; C_{iss} is the small-signal input capacitance with the drain and source terminals shorted; and C_{oss} is the small-signal output capacitance with the gate and source terminals shorted.

The MOSFET capacitances C_{gs}, C_{gd}, and C_{ds} are nonlinear and a function of the dc bias voltage. The variations in C_{oss} and C_{iss} are significant as the drain-to-source voltage and the gate-to-source voltage each cross zero. The objective of the drive circuit is to charge and discharge the gate-to-source and gate-to-drain parasitic capacitances to turn on and off the device, respectively.

In power electronics, the aim is to use power-switching devices that operate at higher and higher frequencies. Hence, the size and weight of output transformers, inductors, and filter capacitors will decrease. As a result, MOSFETs are now used extensively in power supply design that requires high switching frequencies, including switching and resonant mode power supplies and brushless dc motor drives. Because of its large conduction losses, its power rating is limited to a few kilowatts. Because of its many advantages over BJT devices, modern MOSFET devices have received high market acceptance.

6.6 MOSFET Regions of Operation

Most MOSFET devices used in power electronics applications are of the n-channel, enhancement type, like that shown in Fig. 6.6a. For the MOSFET to carry drain current, a channel between the drain and the source must be created. This occurs when the gate-to-source voltage exceeds the device threshold voltage V_{Th}. For $v_{GS} > V_{Th}$, the device can be either in the triode region, which is also called "constant resistance" region, or in the saturation region, depending on the value of v_{DS}. For given v_{GS}, with small v_{DS} ($v_{DS} < v_{GS} - V_{Th}$), the device operates in the triode region (saturation region in the BJT), and for larger v_{DS} ($v_{DS} > v_{GS} - V_{Th}$), the device enters the saturation region (active region in the BJT). For $v_{GS} < V_{Th}$, the device turns off, with drain current almost equal to zero. Under both regions of operation, the gate current is almost zero. This is why the MOSFET is known as a voltage-driven device and, therefore, requires simple gate control circuit.

The characteristic curves in Fig. 6.6b show that there are three distinct regions of operation labeled as triode region, saturation region, and cut-off region. When used as a switching device, only triode and cut-off regions are used, whereas, when it is used as an amplifier, the MOSFET must operate in the saturation region, which corresponds to the active region in the BJT.

The device operates in the cut-off region (off-state) when $v_{GS} < V_{Th}$, resulting in no induced channel. In order to operate the MOSFET in either the triode or saturation region, a channel must first be induced. This can be accomplished by applying gate-to-source voltage that exceeds v_{Th}, that is, $v_{GS} > V_{Th}$.

Once the channel is induced, the MOSFET can operate in either the triode region (when the channel is continuous with no pinch-off, resulting in drain current proportional to the channel resistance) or the saturation region (the channel pinches off, resulting in constant I_D). The gate-to-drain bias voltage (v_{GD}) determines whether the induced channel enters pinch-off or not. This is subject to the following restriction.
For a triode mode of operation, we have

\[v_{GD} > V_{Th} \]
\[v_{GD} < V_{Th} \]

And for the saturation region of operation, pinch-off occurs when \(v_{GD} = V_{Th} \).

In terms of \(v_{DS} \), the preceding inequalities may be expressed as follows.

1. For triode region of operation

\[v_{DS} < v_{GS} - V_{Th} \quad \text{and} \quad v_{GS} > V_{Th} \] \hspace{1cm} (6.3)

2. For saturation region of operation

\[v_{DS} > v_{GS} - V_{Th} \quad \text{and} \quad v_{GS} > V_{Th} \] \hspace{1cm} (6.4)

3. For cut-off region of operation

\[v_{GS} < V_{Th} \] \hspace{1cm} (6.5)

It can be shown that drain current \(i_D \) can be mathematically approximated as follows:

\[i_D = K[2(v_{GS} - V_{Th})v_{DS} - v_{DS}^2] \quad \text{triode region} \] \hspace{1cm} (6.6)
\[i_D = K(v_{GS} - V_{Th})^2 \quad \text{saturation region} \] \hspace{1cm} (6.7)

where

\[K = \frac{1}{2}\mu_n C_{OX} \left(\frac{W}{L} \right) \]

and \(\mu_n \) is the electron mobility; \(C_{OX} \) is the oxide capacitance per unit area; \(L \) is the length of the channel; and \(W \) is the width of the channel.

Typical values for these parameters are given in the PSpice model that will be discussed later. At the boundary between the saturation (active) and triode regions, we have

\[v_{DS} = v_{GS} - V_{Th} \] \hspace{1cm} (6.8)

which results in the following equation for \(i_D \):

\[i_D = k v_{DS}^2 \] \hspace{1cm} (6.9)

The input transfer characteristics curve for \(i_D \) vs \(v_{GS} \) is when the device is operating in the saturation region shown in Fig. 6.10.

The large signal equivalent circuit model for an \(n \)-channel enhancement-type MOSFET operating in the saturation mode is shown in Fig. 6.11. The drain current is represented by a current source as the function of \(V_{TH} \) and \(v_{GS} \).

If after the channel is pinched-off, we assume that the drain-source current will no longer be constant but rather depends on the value of \(v_{DS} \) as shown in Fig. 6.12, then the increased value of \(v_{DS} \) cause a reduced channel length, resulting in a phenomenon known as channel-length modulation \([3, 4]\). If the \(v_{DS} \) lines are extended as shown in Fig. 6.12, they all intercept the \(v_{DS} \) axis at a single point labeled \(-1/\lambda \), where \(\lambda \) is...
a positive constant MOSFET parameter. The term \((1 + \lambda \nu_{DS})\) is added to the \(i_D\) equation in order to account for the increase in \(i_D\) due to the channel-length modulation. Here \(i_D\) is given by

\[
i_D = k(v_{GS} - V_{Th}^2)(1 + \lambda \nu_{DS}) \quad \text{saturation region} \quad (6.10)
\]

From the definition of the \(r_0\) given in Eq. 6.11, it is easy to show that the MOSFET output resistance can be expressed as follows:

\[
r_0 = \frac{1}{\lambda k(v_{GS} - V_{Th})} \quad (6.11)
\]

If we assume that the MOSFET is operating under small signal condition, that is, the variation in \(v_{GS}\) on \(i_D\) vs \(v_{GS}\) is in the neighborhood of the dc operating point \(Q\) at \(i_D\) and \(v_{GS}\) as shown in Fig. 6.13. As a result, the \(i_D\) current source can be represented by the product of the slope \(g_m\) and \(v_{GS}\) as shown in Fig. 6.14.

6.6.1 MOSFET Switching Characteristics

Because the MOSFET is a majority carrier transport device, it is inherently capable of high frequency operation [5–8]. However, the MOSFET has two limitations:

1. high input gate capacitances; and
2. transient/delay due to carrier transport through the drift region.

As stated earlier, the input capacitance consists of two components: the gate-to-source and gate-to-drain capacitances. The input capacitances can be expressed in terms of the device junction capacitances by applying the Miller theorem to Fig. 6.15a. Using the Miller theorem, the total input capacitance \(C_{in}\), seen between the gate-to-source, is given by

\[
C_{in} = C_{gs} + (1 + g_m R_L) C_{gd} \quad (6.12)
\]

The frequency responses of the MOSFET circuit are limited by the charging and discharging times of \(C_{in}\). The Miller effect is inherent in any feedback transistor circuit with resistive load that exhibits a feedback capacitance from the input and output. The objective is to reduce the feedback gate-to-drain resistance. The output capacitance between the drain-to-source \(C_{ds}\) does not affect the turn-on and turn-off MOSFET switching characteristics. Figure 6.16 shows how \(C_{gd}\) and \(C_{gs}\) vary under increased drain-source \(v_{DS}\) voltage.

In power electronics applications, power MOSFET are operated at high frequencies in order to reduce the size of
the magnetic components. In order to reduce the switching losses, power MOSFET are maintained in either the on-state (conduction state) or the off-state (forward-blocking) state.

It is important we understand internal device behavior, which leads to an understanding of the parameters that govern the device transition from the on-state and off-states. To investigate the on- and off-switching characteristics, we consider the simple power electronic circuit shown in Fig. 6.17a under inductive load. The flyback diode \(D \) is used to pick up the load current when the switch is off. To simplify the analysis we will assume the load inductance is a large enough \(L_0 \) that the current through it is constant as shown in Fig. 6.17b.

6.6.2 Turn-On Characteristics

Let us assume initially that the device is off and that the load current \(I_0 \) flows through \(D \) as shown in Fig. 6.18a, \(v_{CG} = 0 \). The voltage \(V_{DS} = V_{DD} \) and \(i_0 = i_0 \). At \(t = t_0 \), the voltage \(v_{GG} \) is applied as shown in Fig. 6.19a. The voltage across \(C_{GS} \) starts charging through \(R_G \). The gate-source voltage, \(v_{GS} \) controls the flow of the drain-to-source current \(i_D \). Let us assume that for \(t_0 \leq t < t_1 \), \(v_{GS} < V_{Th} \), that is, the MOSFET remains in the cut-off region with \(i_D = 0 \), regardless of \(v_{DS} \). The time interval \(t_2 \) represents the delay turn-on time needed to change \(C_{GS} \) from zero to \(V_{Th} \). The expression for the time interval \(\Delta t_0 = t_1 - t_0 \) can be obtained as shown next.

The gate current is given by

\[
i_G = \frac{v_{GG} - v_{GS}}{R_G}
\]

\[
= i_{CG} + i_{GD}
\]

\[
= C_{GS} \frac{dv_{GS}}{dt} + C_{GD} \frac{d(v_{G} - v_{D})}{dt}
\]

(6.13)

where \(v_{G} \) and \(v_{D} \) are gate-to-ground and drain-to-ground voltages, respectively. As we have \(v_{G} = v_{GS}, \ v_{D} = +V_{DD}, \)

then \(i_G \) is given by

\[
i_G = C_{GS} \frac{dv_{GS}}{dt} + C_{GD} \frac{dv_{GS}}{dt} = (C_{GS} + C_{GD}) \frac{dv_{GS}}{dt}
\]

(6.14)
FIGURE 6.18 Equivalent modes: (a) MOSFET is in the off-state for \(t < t_0 \), \(v_{GS} = 0 \), \(v_{DS} = V_{DD} \), \(i_G = 0 \), \(i_D = 0 \); (b) MOSFET is in the off-state with \(v_{GS} < V_{Th} \) for \(t_1 > t > t_0 \); (c) \(v_{GS} > V_{Th} \), \(t_2 < t < t_1 \); (d) \(v_{GS} > V_{Th} \), \(t_f = t_0 \) for \(t_2 < t < t_f \); and (e) \(v_{GS} > V_{Th} \), \(i_D = I_0 \), \(t > t_3 \) the device is fully on.
From Eqs. (13) and (14), we obtain,
\[\frac{V_{GG} - V_{GS}}{R_G} = (C_{GS} + C_{GD}) \frac{dv_{GS}}{dt} \] (6.15)

Solving Eq. (6.15) for \(v_{GS}(t) \) for \(t > t_0 \) with \(v_{GS}(t_0) = 0 \), we obtain,
\[v_{GS}(t) = V_{GG}(1 - e^{(t-t_0)/\tau}) \] (6.16)

where
\[\tau = R_G(C_{GS} + C_{GD}) \]

The gate current \(i_G \) is given by
\[i_G = \frac{V_{GG}}{R_G} e^{-(t-t_0)/\tau} \] (6.17)

As long as \(v_{GS} < V_{Th} \), \(i_D \) remains zero. At \(t = t_1 \), \(v_{GS} \) reaches \(V_{Th} \) causing the MOSFET to start conducting. Waveforms for \(i_G \) and \(v_{GS} \) are shown in Fig. 6.19. The time interval \((t_1 - t_0) \) is given by
\[\Delta t_{10} = t_1 - t_0 = -\tau \ln \left(1 - \frac{V_{Th}}{V_{GG}} \right) \]

\(\Delta t_{10} \) represents the first delay interval in the turn-on process.

For \(t > t_1 \) with \(v_{GS} > V_{Th} \), the device starts conducting and its drain current is given as a function of \(v_{GS} \) and \(V_{Th} \). In fact, \(i_D \) starts flowing exponentially from zero as shown in Fig. 6.19d. Assume the input transfer characteristics for the MOSFET are limited as shown in Fig. 6.20 with the slope of \(g_m \) given by
\[g_m = \frac{\partial i_D}{\partial v_{GS}} = \frac{2 \sqrt{i_{DS} I_0}}{V_{Th}} \] (6.18)

The drain current can be approximated as follows:
\[i_D(t) = g_m(v_{GS} - V_{Th}) \] (6.19)

As long as \(i_D(t) < I_0 \), \(D \) remains on and \(v_{DS} = V_{DD} \) are as shown in Fig. 6.18c.

The equation for \(v_{GS}(t) \) remains the same as in Eq. (6.16), hence, Eq. (6.19) results in \(i_D(t) \) given by
\[i_D(t) = g_m(V_{GG} - V_{Th}) - g_m V_{GG} e^{-(t-t_1)/\tau} \] (6.20)

The gate current continues to decrease exponentially as shown in Fig. 6.19. At \(t = t_2 \), \(i_D \) reaches its maximum value of \(I_0 \), turning \(D \) off. The time interval \(\Delta t_{21} = (t_2 - t_1) \) is obtained from Eq. (20) by setting \(i_D(t_2) = I_0 \).
\[\Delta t_{21} = \tau \ln \left(\frac{g_m V_{GG}}{g_m(V_{GG} - V_{Th}) - I_0} \right) \] (6.21)

For \(t > t_2 \) the diode turns off and \(i_D \approx I_0 \) as shown in Fig. 6.18d. As the drain-current is nearly a constant, then the gate-source voltage is also constant according to the input transfer characteristic of the MOSFET, that is,
\[i_D = g_m(v_{GS} - V_{Th}) \approx I_0 \] (6.22)

Hence,
\[v_{GS}(t) = \frac{I_0}{g_m} + V_{Th} \] (6.23)
At \(t = t_2 \), \(i_G(t) \) is given by

\[
i_G(t_2) = \frac{V_{GG} - v_{GS}(t_2)}{V_{Th}} = \frac{V_{GG} - I_0 \cdot \tau_{on} - V_{Th}}{V_{Th}} \quad (6.24)
\]

As the time constant \(\tau \) is very small, it is safe to assume that \(v_{GS}(t_2) \) reaches its maximum, that is,

\[
v_{GS}(t_2) \approx V_{GG}
\]

and

\[
i_G(t_2) \approx 0
\]

For \(t_2 \leq t < t_b \), the diode turns off the load current \(I_0 \) and (drain current \(i_D \)) starts discharging the drain-to-source capacitance.

As \(v_{GS} \) is constant, the entire gate current flows through \(C_{GD} \), which results in the following relation,

\[
i_G(t) = i_{c_{gd}} = C_{GD} \frac{dv_{G} - v_{D}}{dt}
\]

With \(v_{G} \) constant and \(v_{S} = 0 \), we have

\[
i_G(t) = -C_{GD} \frac{dv_{DS}}{dt} = -\frac{V_{GG} - V_{Th}}{R_G}
\]

Solving for \(v_{DS}(t) \) for \(t > t_2 \), with \(v_{DS}(t_2) = V_{DD} \), we obtain

\[
v_{DS}(t) = -\frac{V_{GG} - V_{Th}}{R_G C_{GD}} (t - t_2) + V_{DD} \quad \text{for } t > t_2 \quad (6.25)
\]

This is a linear discharge of \(C_{GD} \) as shown in Fig. 6.19e.

The time interval \(\Delta t_{32} = (t_3 - t_2) \) is determined by assuming that at \(t = t_3 \), the drain-to-source voltage reaches its minimum value determined by its on-resistance, \(v_{DS(ON)} \) that is, \(v_{DS(ON)} \) is given by

\[
v_{DS(ON)} \approx I_0 \cdot r_{DS(ON)} = \text{constant}
\]

For \(t > t_b \), the gate current continues to charge \(C_{GD} \) and as \(v_{DS} \) is constant, \(v_{GS} \) starts charging at the same rate as in interval \(t_0 \leq t < t_1 \), that is,

\[
v_{GS}(t) = V_{GG} \left(1 - e^{-\left(t-t_b\right)/\tau}\right)
\]

The gate voltage continues to increase exponentially until \(t = t_3 \), when it reaches \(V_{GS} \), at which \(i_G = 0 \) and the device fully turns on as shown in Fig. 6.18e.

We have equivalent circuit model when the MOSFET is completely turned on for \(t > t_1 \). At this time, capacitors \(C_{GS} \) and \(C_{GD} \) are charged with \(V_{GS} \) and \((I_0 \cdot r_{DS(ON)} - V_{GS}) \), respectively.

The time interval \(\Delta t_{32} = (t_3 - t_2) \) is obtained by evaluating \(v_{DS} \) at \(t = t_3 \) as follows:

\[
v_{DS}(t_3) = -\frac{V_{GG} - V_{Th} \cdot (t - t_2) + V_{DD}}{R_G C_{GD}}
\]

Hence, \(\Delta t_{32} = (t_3 - t_2) \) is given by

\[
\Delta t_{32} = t_3 - t_2 = R_G C_{GD} \left(\frac{V_{DD} - I_0 r_{DS(ON)}}{V_{GS} - V_{Th}}\right) \quad (6.27)
\]

The total delay in turning on the MOSFET is given by

\[
t_{ON} = \Delta t_{10} + \Delta t_{21} + \Delta t_{32} \quad (6.28)
\]
Notice that the MOSFET sustains high voltage and current simultaneously during intervals Δt_{11} and Δt_{32}. This results in large power dissipation during turn-on, which contributes to overall switching losses. The smaller the R_G, the smaller Δt_{21} and Δt_{32} become.

6.6.3 Turn-off Characteristics

To study the turn-off characteristic of the MOSFET, we will consider Fig. 6.17b again by assuming the MOSFET is on and in steady state at $t > t_0$ with the equivalent circuit of Fig. 6.18(e). Therefore, at $t = t_0$ we have the following initial conditions:

\[v_{DS}(t_0) = I_D r_{DS(ON)} \]
\[v_{GS}(t_0) = V_{GG} \]
\[i_{DS}(t_0) = I_0 \]
\[i_G(t_0) = 0 \]
\[v_{cs}(t_0) = V_{GG} \]
\[v_{c_{GD}}(t_0) = V_{GG} - I_0 r_{DS(ON)} \]

At $t = t_0$, the gate voltage $v_{GG}(t)$ is reduced to zero as shown in Fig. 6.21a. The equivalent circuit at $t > t_0$ is shown in Fig. 6.22a.

We assume that the drain-to-source remains constant while C_{GS} and C_{GD} are discharging through R_G as governed by the following relations,

\[i_G = \frac{-v_G}{R_G} = i_{cs} + i_{c_{GD}} \]
\[= C_{GS} \frac{dv_{GS}}{dt} + C_{GD} \frac{dv_{GD}}{dt} \]

As v_{DS} is assumed constant, then i_G becomes

\[i_G = \frac{-v_G}{R_G} = \frac{C_{GS} + C_{GD}}{R_G} \frac{dv_{GS}}{dt} \]

Hence, evaluating for v_{GS} for $t \geq t_0$, we obtain

\[v_{GS}(t) = v_{GS}(t_0) e^{-\left(t-t_0\right)/\tau} \]

Where

\[v_{GS}(t_0) = V_{GG} \]
\[\tau = (C_{GS} + C_{GD}) R_G \]

As v_{GS} continues to decrease exponentially, drawing current from C_{GD}, it will reach a constant value at which drain current is fixed, that is, $I_D = I_0$. From the input transfer characteristics, the value of v_{GS}, at which $I_D = I_0$, is given by

\[v_{GS} = \frac{I_0}{g_m} + V_{Th} \]

The time interval $\Delta t_{10} = t_1 - t_0$ can be obtained easily by setting Eq. (6.31) to Eq. (6.32) at $t = t_1$. The gate current during the $t_2 \leq t < t_1$ is given by

\[i_G = -\frac{V_{GD} - e^{-(t-t_0)/\tau}}{R_G} \]

Because for $t_2 - t_1$ the gate-to-source voltage is constant and equals $v_{GS}(t_1) = \frac{I_0}{g_m} + V_{Th}$ as shown in Fig. 6.21b, then the entire gate current is being drawn from C_{GD} and

\[i_G = \frac{C_{GD}}{R_G} \frac{dv_{GD}}{dt} = \frac{C_{GD}}{R_G} \frac{dv_{GS} - v_{DS}}{dt} = -C_{GD} \frac{dv_{DS}}{dt} \]

\[= \frac{v_{GS}(t_1)}{R_G} = \frac{1}{R_G} \left(\frac{I_0}{g_m} + V_{Th} \right) \]
Assuming \(i_G \) constant at its initial value at \(t = t_1 \), that is,
\[
i_G = \frac{v_{GS}(t_1)}{R_G} = \frac{I_0}{R_G} \left(\frac{I_0}{g_m} + V_{Th} \right)
\]
Integrating both sides of the preceding equation from \(t_1 \) to \(t \) with \(v_{DS}(t_1) = -v_{DS(ON)} \), we obtain
\[
v_{DS}(t) = v_{DS(ON)} + \frac{1}{R_G C_{GD}} \left(I_0 + V_{Th} \right) (t - t_1) \tag{6.34}
\]
hence \(v_{DS} \) charges linearly until it reaches \(V_{DD} \).

At \(t = t_2 \), the drain-to-source voltage becomes equal to \(V_{DD} \), forcing \(D \) to turn-on as shown in Fig. 6.22c.

The drain-to-source current is obtained from the transfer characteristics and given by
\[
i_{DS}(t) = g_m (v_{GS} - V_{Th})
\]
Where \(v_{GS}(t) \) is obtained from the following equation:
\[
i_G = -\frac{v_{GS}}{R_G} = \left(C_{GS} + C_{GD} \right) \frac{dv_{GS}}{dt} \tag{6.35}
\]
The time interval that most affects the power dissipation are

As the drain-source voltage starts increasing, the device starts leaving the on-state and enters the saturation (linear) region. During the transition time the device exhibits large voltage and current simultaneously. At higher drain-source voltage values that approach the avalanche breakdown it is observed that power MOSFET suffers from a second breakdown phenomenon. The second breakdown occurs when the MOSFET is in the blocking state (off) and a further increase in \(v_{DS} \) will cause a sudden drop in the blocking voltage. The source of this phenomenon in MOSFET is caused by the presence of a parasitic n-type bipolar transistor as shown in Fig. 6.24.

The inherent presence of the body diode in the MOSFET structure makes the device attractive for applications in which bidirectional current flow is needed in the power switches.

Today’s commercial MOSFET devices have excellent high operating temperatures. The effect of temperature is more prominent on the on-state resistance as shown in Fig. 6.25.

As the on-state resistance increases, the conduction losses also increase. This large \(v_{DS(ON)} \) limits the use of the MOSFET

6.6.4 Safe Operation Area

The safe operation area (SOA) of a device provides the current and voltage limits the device must be able to handle to avoid destructive failure. Typical SOA for a MOSFET device is shown in Fig. 6.23. The maximum current limit while the device is on is determined by the maximum power dissipation,

\[
P_{ON} = I_{DS(ON)}R_{DS(ON)}
\]

\[
P_{ON} = I_{DS(ON)}R_{DS(ON)}
\]
in high-voltage applications. The use of silicon carbide instead of silicon has reduced many fold.

As the device technology keeps improving, especially in terms of improved switch speeds and increased power handling capabilities, it is expected that the MOSFET will continue to replace BJTs in all types of power electronics systems.

6.7 MOSFET PSPICE Model

The PSPICE simulation package has been used widely by electrical engineers as an essential software tool for circuit design. With the increasing number of devices available in the marketplace, PSPICE allows for accurate extraction and understanding of various device parameters and their varied effects on the overall design prior to their fabrication. Today’s PSPICE library is rich with numerous commercial MOSFET models. This section will give a brief overview of how the MOSFET modeling of the MOSFET device will be given here.

6.7.1 Static Model

There are four different types of MOSFET models that are also known as levels. The simplest MOSFET model is called the LEVEL1 model and is shown in Fig. 6.26. [9, 10].

The LEVEL2 model uses the same parameters as LEVEL1, but it provides a better model for Ids by computing the model coefficients K_P, γ, λ, ϕ, and Ψ directly from the geometrical, physical, and technological parameters [10]. LEVEL3 is used to model the short-channel devices and LEVEL4 represents the Berkeley short-channel IGFET model (BSIM-model).

For the triode regions, $v_{GS} > V_{Th}$, $v_{DS} < v_{GS}$, and $v_{Th} < v_{GS} - V_{Th}$, the drain current is given by

$$i_D = \frac{K_P}{2} \frac{W}{L - 2X_b} \left(v_{GS} - v_{Th} - \frac{v_{DS}}{2}\right) v_{DS} (1 + \lambda v_{DS}) \quad (6.41)$$

In the saturation (linear) region, where $v_{GS} > V_{Th}$ and $v_{DS} > v_{GS} - V_{Th}$, the drain current is given by

$$I_D = \frac{K_P}{2} \frac{W}{L - 2X_b} (v_{GS} - V_{Th})^2 (1 + \lambda v_{DS}) \quad (6.42)$$

where K_P is the transconductance and X_b is the lateral diffusion.

The threshold voltage V_{Th} is given by

$$V_{Th} = V_{T0} + \delta \left(\sqrt{2\phi_p - V_{BS}} - \sqrt{2\phi_p}\right) \quad (6.43)$$

where, V_{T0} is the zero-bias threshold voltage; δ is the body-effect parameter; and ϕ_p is the surface inversion potential.

Typically, $X_b \ll L$ and $\lambda \approx 0$.

The term $(1 + \lambda v_{DS})$ is included in the model as an empirical connection to model the effect of the output conductance when the MOSFET is operating in the triode region. Lambda is known as the channel-length modulation parameter.

When the bulk and source terminals are connected together, that is, $V_{BS} = 0$, the device threshold voltage equals the zero-bias threshold voltage,

$$V_{Th} = V_{T0}$$

where V_{T0} is positive for the n-channel enhancement mode devices and negative for the depletion mode n-channel devices.

The parameters K_P, V_{T0}, δ, ϕ are electrical parameters that can be either specified directly in the MODEL statement under the PSPICE keywords K_P, V_{T0}, γ, λ, ϕ, and Ψ, respectively, as shown in Table 6.1. These parameters can also be calculated when the geometrical and physical parameters. The two-substrate currents that flow from the bulk to the source

![Figure 6.25](Image)

FIGURE 6.25 The on-state resistance as a fraction of temperature.

![Figure 6.26](Image)

FIGURE 6.26 Spice L1 MOSFET static model.
I_{GS} and from the bulk to the drain I_{BD} are simply diode currents and are given by

\begin{align}
I_{GS} &= I_{SS} \left(e^{\frac{V_g}{\tau}} - 1 \right) \\
I_{BD} &= I_{DS} \left(e^{\frac{V_d}{\tau}} - 1 \right)
\end{align}

(6.44) (6.45)

Where \(I_{SS} \) and \(I_{DS} \) are the substrate source and substrate drain saturation currents. These currents are considered equal and given as \(I_0 \) in the MODEL statement with a default value of \(10^{-14} \) A. Where the equation symbols and their corresponding PSpice parameter names are shown in Table 6.1.

In PSpice, a MOSFET device is described by two statements, with first statement starting with the letter M and the second statement starting with .MODEL, which defines the model used in the first statement. The following syntax is used:

\[
\text{M<device_name> <parameter_name> <value>
\text{Gate_node_number> <Source_node_number> <Substrate_node_number> <Model_name>
\{
\text{<param_1>=<value_1> <param_2>=<value_2>
\} .MODEL
\text{<Model_name> <type_name>
\{
\text{<param_1>=<value_1> <param_2>=<value_2>
\}
\]
\]

Where the starting letter "M" in M<device_name> statement indicates that the device is a MOSFET and <device_name> is a user specified label for the given device, the <Model_name> is one of the hundreds of device models specified in the PSpice library, and <model_name> or the same name specified in the device name statement <type_name>, is either NMOS of PMOS, depending on whether the device is n- or p-channel MOS, respectively. An optional list of parameter types and their values follows. Length L and width W and other parameters can be specified in the M<device_name>, in the .MODEL or .OPTION statements. A user may select not to include any value, and PSpice will use the specified default values in the model. For normal operation (physical construction of the MOS devices), the source and bulk substrate nodes must be connected together. In all the PSpice library files, default parameter values for L, W, AS, AD, PS, PD, NRD, and NDS are included, and a user then should not specify such values in the device “M” statement or in the OPTION statement.

The power MOSFET device PSpice models include relatively complete static and dynamic device characteristics given in the manufacturing data sheet. In general, the following effects are specified in a given PSpice model: dc transfer curves, on-resistance, switching delays, gate dive characteristics, and reverse-mode “body-diode” operation. The device characteristics that are not included in the model are noise, latch-ups, maximum voltage, and power ratings. Please see OrCAD Library Files.

Example 6.3. Let us consider an example that uses IRF MOSFET and connected as shown in Fig. 6.27.

It was decided that the device should have a blocking voltage \(V_{DSS} \) of 600 V and drain current \(I_D \) of 3.6 A. The device selected is IRF CC30 with case TO220. This device is listed in the PSpice library under model number IRFBC30 as follows:

*Library of Power MOSFET Models *Copyright
OrCAD, Inc. 1998 All Rights Reserved. *
*Revision: 1.24 *$Author: Rperez *$
*$Date: 19 October 1998 10:22:26 *$.Model IRFBC30 NMOS NMOS

The PSpice code for the MOS device labeled S1 used in Fig. 6.27 is given by

MS1 3 5 0 0 IRFBC30 .MODEL IRFBC30
.Model IRFBC30 NMOS (Level=3 Gamma=0
Delta=0 Eta=0 Theta=0 Kappa=0.2
Vmax=0 Xj=0 + Tox=100n Uo=600 Phi=.6
Rs=5.002m Kp=20.43u W=.35 L=2u
Vto=3.625 + Rd=1.851 Rds=2.667MEG
Cbd=790.1p Pb=.8 Mj=.5 Fc=.5
Cgso=1.64n + Cgdo=123.9p Rg=1.052
Vmax=0 Xj=0 + Tox=100n Uo=600 Phi=.6
Rs=5.002m Kp=20.43u W=.35 L=2u
Vto=3.625 + Rd=1.851 Rds=2.667MEG
Cbd=790.1p Pb=.8 Mj=.5 Fc=.5
Cgso=1.64n + Cgdo=123.9p Rg=1.052
Is=720.2p N=1 Tt=685) * Int'l Rectifier
pid=IRFCC30 case=TO220

6.7.2 Large Signal Model

The equivalent circuit of Fig. 6.28 includes five device parasitic capacitances. The capacitors \(C_{GB}, C_{GS}, \) and \(C_{GD} \), represent the charge-storage effect between the gate terminal and the bulk, source and drain terminals, respectively. These are nonlinear two-terminal capacitors expressed as functions of \(W, L, C_{GO}, V_{GS}, V_{DS}, \) and \(C_{GBO}, C_{GSO}, C_{GDO} \). Capacitors \(C_{GBO}, C_{GSO}, \) and \(C_{GDO} \) outside the channel region, are known as overlap capacitances that exist between the gate electrode and the other three terminals, respectively. Table 6.2 shows the list of MOSFET capacitance parameters and their default values. Notice that the PSpice overlap capacitor keywords \((C_{GBO}, C_{GSO}, C_{GDO}) \) are proportional either to the MOSFET width or length of the channel as follows:

\[
C_{GBO} = \frac{C_{GSO}}{L} \\
C_{GSO} = \frac{C_{GBO}}{W} \\
C_{GDO} = \frac{C_{GDO}}{W}
\]

(6.46)

In the triode region, where \(V_{GS} > V_{DS} = V_{Th} \), the terminal capacitors are given by,

\[
C_{GS} = L W C_{GOX} \left[1 - \left(\frac{V_{GS} - V_{DS} - V_{Th}}{2(V_{GS} - V_{Th}) - V_{DS}} \right)^2 \right] + C_{GBO}. \\
C_{GD} = L W C_{GOX} \left[1 - \left(\frac{V_{DS} - V_{Th}}{2(V_{GS} - V_{Th} - V_{DS})} \right)^2 \right] + C_{GDO}. \\
C_{GB} = C_{GBO} \cdot L
\]

(6.47)
TABLE 6.1 PSPICE MOSFET parameters

(a) Device dc and parasitic parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Description</th>
<th>Default</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TO}</td>
<td>VTO</td>
<td>Zero-bias threshold voltage</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>\lambda</td>
<td>LAMDA</td>
<td>Channel-length modulation(^1,2)</td>
<td>0</td>
<td>(\text{V}^{-1})</td>
</tr>
<tr>
<td>\gamma</td>
<td>GAMMA</td>
<td>Body-effect (bulk) threshold parameter</td>
<td>0</td>
<td>(\text{V}^{-1/2})</td>
</tr>
<tr>
<td>\Phi_p</td>
<td>PHI</td>
<td>Surface inversion potential</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>\eta</td>
<td>ETA</td>
<td>Static feedback(^3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>\kappa</td>
<td>KAPPA</td>
<td>Saturation field factor(^4)</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>\mu_s</td>
<td>US</td>
<td>Surface mobility</td>
<td>10(^{-14})</td>
<td>A</td>
</tr>
<tr>
<td>IS</td>
<td>JS</td>
<td>Bulk saturation current</td>
<td>0</td>
<td>A/(\text{m}^2)</td>
</tr>
<tr>
<td>IS_{SW}</td>
<td>JSSW</td>
<td>Bulk saturation current/length</td>
<td>0</td>
<td>A/(\text{m})</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Bulk emission coefficient n</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>PHI</td>
<td>Surface inversion potential</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>ZETA</td>
<td>PBSW</td>
<td>Bulk junction voltage</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>R_D</td>
<td>R_D</td>
<td>Drain resistance</td>
<td>0 (\Omega)</td>
<td></td>
</tr>
<tr>
<td>R_S</td>
<td>RS</td>
<td>Source resistance</td>
<td>0 (\Omega)</td>
<td></td>
</tr>
<tr>
<td>R_G</td>
<td>RG</td>
<td>Gate resistance</td>
<td>0 (\Omega)</td>
<td></td>
</tr>
<tr>
<td>R_B</td>
<td>RB</td>
<td>Bulk resistance</td>
<td>0 (\Omega)</td>
<td></td>
</tr>
<tr>
<td>R_{DS}</td>
<td>RDS</td>
<td>Drain-source shunt resistance</td>
<td>2 (\Omega)</td>
<td></td>
</tr>
<tr>
<td>R_{SH}</td>
<td>RSH</td>
<td>Drain and source diffusion sheet resistance</td>
<td>0 (\Omega/\text{m}^2)</td>
<td></td>
</tr>
</tbody>
</table>

(b) Device process and dimensional parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Description</th>
<th>Default</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{sub}</td>
<td>NSUB</td>
<td>Substrate doping density</td>
<td>None</td>
<td>cm(^{-3})</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
<td>Channel width</td>
<td>DEFW</td>
<td>m</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>Channel length</td>
<td>DEFL</td>
<td>m</td>
</tr>
<tr>
<td>W_D</td>
<td>WD</td>
<td>Lateral diffusion width</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>X_j</td>
<td>LD</td>
<td>Lateral diffusion length</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>K_P</td>
<td>KP</td>
<td>Transconductance coefficient</td>
<td>20 \times 10^{-6}</td>
<td>A/(\text{v}^2)</td>
</tr>
<tr>
<td>I_{ox}</td>
<td>TOX</td>
<td>Oxide thickness</td>
<td>10(^{-7})</td>
<td>m</td>
</tr>
<tr>
<td>N_{SS}</td>
<td>NSS</td>
<td>Surface-state density</td>
<td>None</td>
<td>cm(^{-2})</td>
</tr>
<tr>
<td>N_{FS}</td>
<td>NFS</td>
<td>Fast surface-state density</td>
<td>0</td>
<td>cm(^{-2})</td>
</tr>
<tr>
<td>N_A</td>
<td>NSUB</td>
<td>Substrate doping</td>
<td>0</td>
<td>cm(^{-3})</td>
</tr>
<tr>
<td>T_{PG}</td>
<td>TPG</td>
<td>Gate material</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(c) Device capacitance parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Description</th>
<th>Default</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{BD}</td>
<td>CBD</td>
<td>Bulk-drain zero-bias capacitance</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>C_{BS}</td>
<td>CBS</td>
<td>Bulk-source zero-bias capacitance</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>C_{CI}</td>
<td>CI</td>
<td>Bulk zero-bias bottom capacitance</td>
<td>0</td>
<td>F/(\text{m}^2)</td>
</tr>
<tr>
<td>C_{JSW}</td>
<td>JSSW</td>
<td>Bulk zero-bias perimeter capacitance/length</td>
<td>0</td>
<td>F/(\text{m})</td>
</tr>
<tr>
<td>M_B</td>
<td>MJ</td>
<td>Bulk bottom grading coefficient</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>M_{SW}</td>
<td>MJSW</td>
<td>Bulk sidewall grading coefficient</td>
<td>0.33</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>F_l</td>
<td>FC</td>
<td>Bulk forward-bias capacitance coefficient</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>C_{CGS}</td>
<td>CGSO</td>
<td>Gate-source overlap capacitance/channel width</td>
<td>0</td>
<td>F/(\text{m})</td>
</tr>
<tr>
<td>XCGDO</td>
<td>CGDO</td>
<td>Gate-drain overlap capacitance/channel width</td>
<td>0</td>
<td>F/(\text{m})</td>
</tr>
<tr>
<td>C_{CGBO}</td>
<td>CGBO</td>
<td>Gate-bulk overlap capacitance/channel length</td>
<td>0</td>
<td>F/(\text{m})</td>
</tr>
<tr>
<td>X_QC</td>
<td>QGC</td>
<td>Fraction of channel charge that associates with drain(^{1,2})</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>K_F</td>
<td>KF</td>
<td>Flicker noise coefficient</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>AF</td>
<td>Flicker noise exponent</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\(^{1,2}\) All superscript numbers in the Description column indicate that this/these parameter(s) are available in this/these level number(s), otherwise it/they are available in all levels.
In the saturation (linear) region we have

$$
C_{GS} = \frac{1}{2} L W C_o X + C_{GSO}
$$

$$
C_{GB} = C_{GB0} L
$$

$$
C_{GD} = C_{GD0}
$$

(6.48)

Where C_{oX} is the per-unit-area oxide capacitance given by

$$
C_{oX} = \frac{K_{oX} E_0}{T_{oX}}
$$

where K_{oX} is the oxide relative dielectric constant, E_0 denotes the free-space dielectric constant as equal to 8.854×10^{-12} F/m; and T_{oX} is the oxide thickness layer as given by data in Table 6.1.

Finally, the diffusion and junction region capacitances between the bulk-to-channel (drain and source) are modeled by C_{BD} and C_{BS} across the two diodes. Because for almost all power MOSFETS, the bulk and source terminals are connected together and at zero potential, diodes D_{BD} and D_{BS} do not have forward bias, thereby resulting in very small conductance values, that is, small diffusion capacitances. The small signal model for MOSFET devices is given in Fig. 6.29.

EXAMPLE 6.4. Figure 6.30a shows an example of a soft-switching power factor connection circuit that has two MOSFET. Its PSPICE simulation waveforms are shown in Fig. 6.30b.

Table 6.2 shows the PSPICE code for Fig. 6.30a.

6.8 Comparison of Power Devices

As stated earlier, the power electronic range is very wide, from hundreds of milliwatts to hundreds of megawatts and thus it is very difficult to find a single switching device type to cover all power electronic applications. Today’s available power devices have tremendous power and frequency rating range, as well as diversity. Their forward current ratings range from a few amperes to a few kiloamperes, their blocking voltage rating...
Table 6.2: PSPICE MOSFET capacitance parameters and their default values for Figure 6.30a

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_{Do})</td>
<td>N00111 OUT Dbreak</td>
</tr>
<tr>
<td>(V_{Vs})</td>
<td>N00305 9 DC 0 AC 0 PULSE 0.9 0.0 0.0 ({D \times Ts} {Ts})</td>
</tr>
<tr>
<td>(L_{Ls})</td>
<td>0 N00111 ({n \times 0.16})</td>
</tr>
<tr>
<td>(K_{n1})</td>
<td>L_Lp1 L_Lp2 L_Ls 0.995</td>
</tr>
<tr>
<td>(C_{Co})</td>
<td>OUT 0 70uF IC=50</td>
</tr>
<tr>
<td>(V_{Vin})</td>
<td>N00103 0 110</td>
</tr>
<tr>
<td>(L_{Li})</td>
<td>N00103 N00999 17.6u IC=0</td>
</tr>
<tr>
<td>(V_{Va})</td>
<td>N-109 0 DC 0 AC 0 PULSE 0 9 ({-\Delta \times Ts/1.1} {2.0 \times \Delta \times Ts}) ({Ts})</td>
</tr>
<tr>
<td>(D_{Dp})</td>
<td>N00121 N00169 Dbreak</td>
</tr>
<tr>
<td>(C_{C7})</td>
<td>N00111 OUT 30p</td>
</tr>
<tr>
<td>(R_{Ro})</td>
<td>OUT 0 25</td>
</tr>
<tr>
<td>(C_{C8})</td>
<td>N00143 OUT 10p</td>
</tr>
<tr>
<td>(D_{Dao})</td>
<td>N00143 OUT Dbreak</td>
</tr>
<tr>
<td>(D_{Di})</td>
<td>N00099 N00245 Dbreak</td>
</tr>
<tr>
<td>(L_{lp2})</td>
<td>N00121 0 ({n}) IC=0</td>
</tr>
<tr>
<td>(C_{C9})</td>
<td>N00169 N00121 10p</td>
</tr>
<tr>
<td>(L_{Las})</td>
<td>N00143 ({0.4 \times n1})</td>
</tr>
<tr>
<td>(K_{n2})</td>
<td>L_Lap L_Las 1.0</td>
</tr>
<tr>
<td>(L_{lp1})</td>
<td>N00245 N00169 ({n}) IC=0</td>
</tr>
<tr>
<td>(L_{lap})</td>
<td>N00245 N000791 ({n1})</td>
</tr>
<tr>
<td>(C_{Cp2})</td>
<td>N00245 N00121 47u IC=170</td>
</tr>
<tr>
<td>(C_{Cp1})</td>
<td>N00169 0 47u IC=170</td>
</tr>
<tr>
<td>(L_{Lak})</td>
<td>N000791 N000911 5u IC=0</td>
</tr>
<tr>
<td>(M_{M1})</td>
<td>N000911 N00109 0 0 IRFBC30</td>
</tr>
<tr>
<td>(M_{M2})</td>
<td>N00245 N00105 0 0 IRF840</td>
</tr>
</tbody>
</table>

PARAM \(D=0.3 \) \(\Delta \) \(\Delta = \) \(0.1 \) \(n=400u \) \(N=1mH \) \(TS=2us \)

**** MOSFET MODEL PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IRFBC30</th>
<th>IRF840</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>2.0 00000-06</td>
<td>2.0 00000-06</td>
</tr>
<tr>
<td>(W)</td>
<td>.35</td>
<td>.68</td>
</tr>
<tr>
<td>(VTO)</td>
<td>3.625</td>
<td>3.879</td>
</tr>
<tr>
<td>(KP)</td>
<td>20.430000E-06</td>
<td>20.850000E-06</td>
</tr>
<tr>
<td>(GAMMA)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(PHI)</td>
<td>.6</td>
<td>.6</td>
</tr>
<tr>
<td>(LAMBDA)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(RD)</td>
<td>1.851</td>
<td>.6703</td>
</tr>
<tr>
<td>(RS)</td>
<td>5.002000E-03</td>
<td>6.382000E-03</td>
</tr>
<tr>
<td>(RG)</td>
<td>1.052</td>
<td>.6038</td>
</tr>
<tr>
<td>(ROS)</td>
<td>2.667000E+06</td>
<td>2.222000E+06</td>
</tr>
<tr>
<td>(IS)</td>
<td>720.200000E-12</td>
<td>56.030000E-12</td>
</tr>
<tr>
<td>(JS)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(PB)</td>
<td>.8</td>
<td>.8</td>
</tr>
<tr>
<td>(PBSW)</td>
<td>.8</td>
<td>.8</td>
</tr>
<tr>
<td>(CBD)</td>
<td>790.100000E-12</td>
<td>1.415000E-09</td>
</tr>
<tr>
<td>(CJ)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(CJSW)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(TT)</td>
<td>685.000000E-09</td>
<td>710.000000E-09</td>
</tr>
<tr>
<td>(CGSO)</td>
<td>1.640000E-09</td>
<td>1.625000E-09</td>
</tr>
<tr>
<td>(CGDO)</td>
<td>123.900000E-12</td>
<td>133.400000E-12</td>
</tr>
<tr>
<td>(CGBO)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(TOX)</td>
<td>100.000000E-09</td>
<td>100.000000E-09</td>
</tr>
<tr>
<td>(XJ)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(UCRIT)</td>
<td>10.000000E+03</td>
<td>10.000000E+03</td>
</tr>
<tr>
<td>(DELTA)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(ETA)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(DIOMOD)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(VFB)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(LETA)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(WETA)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(UG)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(TEMP)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(VDD)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(XPART)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
ranges from a few volts to a few kilovolts, and the switching frequency ranges from a few hundred hertz to a few mega hertz (see Table 6.3). This table compares the available power semiconductor devices. We only give relative comparison because there is no straightforward technique that can rank these devices. As we compile this table, devices are still being developed very rapidly with higher current, voltage ratings, and switching frequency. Finally, Fig. 6.31 shows a plot of frequency versus power, illustrating the power and frequency ratings of available power devices.

6.9 Future Trends in Power Devices

It is expected that improvement in power handling capabilities and increasing frequency of operation of power devices will
continue to drive the research and development in semiconductor technology. From power MOSFET to power MOS-IGBT and to power MOS-controlled thyristors, power rating has consistently increased by factor of 5 from one type to another. Major research activities will focus on obtaining new device structures based on MOS-BJT technology integration so as to rapidly increase power ratings. It is expected that the power MOS-BJT technology will capture more than 90% of the total power transistor market.

The continuing development of power semiconductor technology has resulted in power systems with driver circuit, logic and control, device protection and switching devices being designed and fabricated on a single chip. Such power IC modules are called “smart power” devices. For example, some of today’s power supplies are available as ICs for use in low-power applications. No doubt the development of smart power devices will continue in the near future, addressing more power electronic applications.

References
7.1 Introduction

The insulated gate bipolar transistor (IGBT), which was introduced in the early 1980s, has become a successful device because of its superior characteristics. The IGBT is a three-terminal power semiconductor switch used to control electrical energy and many new applications would not be economically feasible without IGBTs. Prior to the advent of the IGBT, power bipolar junction transistors (BJTs) and power metal oxide field effect transistors (MOSFETs) were widely used in low to medium power and high-frequency applications, where the speed of gate turn-off thyristors was not adequate. Power BJTs have good on-state characteristics but long switching times especially at turn-off. They are current-controlled devices with small current gain because of high-level injection effects and wide basewidth required to prevent reach-through breakdown for high blocking voltage capability. Therefore, they require complex base-drive circuits to provide the base current during on-state, which increases the power loss in the control electrode.

On the other hand, power MOSFETs are majority carrier devices, which exhibit very high switching speeds. However, the unipolar nature of the power MOSFETs causes inferior conduction characteristics as the voltage rating is increased above 200 V. Therefore, their on-state resistance increases with increasing breakdown voltage. Furthermore, as the voltage rating increases, the inherent body diode shows inferior reverse recovery characteristics, which leads to higher switching losses.

In order to improve the power device performance it is advantageous to have the low on-state resistance of power BJTs with an insulated gate input similar to that of a power MOSFET. The Darlington configuration of the two devices shown in Fig. 7.1 has superior characteristics as compared to the two discrete devices. This hybrid device could be gated in the same way as a power MOSFET with low on-state resistance because most of the output current is handled by the BJT. Because of the low current gain of BJT, a MOSFET of equal size is required as a driver. A more powerful approach to obtain the maximum benefits of the MOS gate control and bipolar current conduction is to integrate the physics of MOSFET and BJT within the same semiconductor region. This concept gave rise to the commercially available IGBTs with superior on-state...
characteristics, good switching speed and excellent safe operating area. Compared to power MOSFETs the absence of the integral body diode can be considered as an advantage or disadvantage depending on the switching speed and current requirements. An external fast-recovery diode or a diode in the same package can be used for specific applications. The IGBTs are replacing MOSFETs in high-voltage applications with lower conduction losses. They have on-state voltage and current density comparable to a power BJT with higher switching frequency. Although they exhibit fast turn-on, their turn-off is slower than a MOSFET because of current fall time. Also, IGBTs have considerably less silicon area than similar rated power MOSFETs. Therefore, by replacing power MOSFETs with IGBTs, the efficiency is improved and cost is reduced. Additionally, IGBT is known as a conductivity-modulated FET (COMFET), insulated gate transistor (IGT), and bipolar-mode MOSFET.

As soft-switching topologies offer numerous advantages over the hard-switching topologies, their use is increasing in the industry. By use of soft-switching techniques IGBTs can operate at frequencies up to hundreds of kilohertz. However, IGBTs behave differently under soft-switching condition compared to their behavior under hard-switching conditions. Therefore, the device trade-offs involved in soft-switching circuits are different than those in the hard-switching case. Application of IGBTs in high-power converters subjects them to high-transient electrical stress such as short-circuit and turn-off under clamped inductive load, and therefore robustness of IGBTs under stress conditions is an important requirement. Traditionally, there has been limited interaction between device manufacturers and power electronic circuit designers. Therefore, the shortcomings of device reliability are observed only after the devices are used in actual circuits. This significantly slows down the process of power electronic system optimization. However, the development time can be significantly reduced if all issues of device performance and reliability are taken into consideration at the design stage. As high stress conditions are quite frequent in circuit applications, it is extremely cost efficient and pertinent to model the IGBT performance under these conditions. However, development of the model can follow only after the physics of device operation under stress conditions imposed by the circuit is properly understood. Physically based process and device simulations are a quick and cheap way of optimizing the IGBT. The emergence of mixed-mode circuit simulators in which semiconductor carrier dynamics is optimized within the constraints of circuit level switching is a key design tool for this task.

7.2 Basic Structure and Operation

The vertical cross section of a half cell of one of the parallel cells of an n-channel IGBT shown in Fig. 7.2 is similar to that of a double-diffused power MOSFET (DMOS) except for a p^+-layer at the bottom. This layer forms the IGBT collector and a pn-junction with n^--drift region, where conductivity modulation occurs by injecting minority carriers into the drain drift region of the vertical MOSFET. Therefore, the current density is much greater than a power MOSFET and the forward voltage drop is reduced. The p^+-substrate, n^--drift layer and p^+-emitter constitute a BJT with a wide base region and hence small current gain. The device operation can be explained by a BJT with its base current controlled by the voltage applied to the MOS gate. For simplicity, it is assumed that the emitter terminal is connected to the ground potential. By applying a negative voltage to the collector, the pn-junction between the p^+-substrate and the n^--drift region is reverse-biased, which prevents any current flow and the device is in its reverse blocking state. If the gate terminal is kept at ground potential but a positive potential is applied to the collector, the pn-junction between the p^+-base and n^--drift region is reverse-biased. This prevents any current flow and the device is in its

![FIGURE 7.1](image) Hybrid Darlington configuration of MOSFET and BJT.

![FIGURE 7.2](image) The IGBT (a) half-cell vertical cross section and (b) equivalent circuit model.
forward blocking state until the open-base breakdown of the \textit{pnp}-transistor is reached.

When a positive potential is applied to the gate and exceeds the threshold voltage required to invert the MOS region under the gate, an \textit{n}-channel is formed, which provides a path for electrons to flow into the \textit{n}⁻-drift region. The \textit{pn}-junction between the \textit{p}⁺-substrate and \textit{n}⁻-drift region is forward-biased and holes are injected into the drift region. The electrons in the drift region recombine with these holes to maintain space-charge neutrality and the remaining holes are collected at the emitter, causing a vertical current flow between the emitter and collector. For small values of collector potential and a gate voltage larger than the threshold voltage, the \textit{on}-state characteristics can be defined by a wide-base power BJT. As the current density increases, the injected carrier density exceeds the low doping of the base region and becomes much larger than the background doping. This conductivity modulation decreases the resistance of the drift region and therefore IGBT has a much greater current density than a power MOSFET with reduced forward-voltage drop. The base-collector junction of the \textit{pnp}-BJT cannot be forward-biased and therefore this transistor will not operate in saturation. However, when the potential drop across the inversion layer becomes comparable to the difference between the gate voltage and threshold voltage, channel pinch-off occurs. The pinch-off limits the electron current and as a result the holes injected from the \textit{p}⁺-layer. Therefore, base current saturation causes the collector current to saturate.

Typical forward characteristics of an IGBT as a function of gate potential and IGBT transfer characteristics are shown in Fig. 7.3. The transfer characteristics of IGBT and MOSFET are similar. The IGBT is in the off-state if the gate-emitter potential is below the threshold voltage. For gate voltages greater than the threshold voltage the transfer curve is linear over most of the drain-current range. Gate oxide breakdown and the maximum IGBT drain current limit the maximum gate-emitter voltage.

To turn off the IGBT, the gate is shorted to the emitter to remove the MOS channel and the base current of the \textit{pnp} transistor. The collector current is suddenly reduced because the electron current from the channel is removed. Then the excess carriers in the \textit{n}⁻-drift region decay by electron-hole recombination, which causes a gradual collector current decay. In order to keep the \textit{on}-state voltage drop low, the excess carrier lifetime must be kept large. Therefore, similar to the other minority carrier devices, there is a trade-off between on-state losses and faster turn-off switching times. In the punch-through (PT) IGBT structure of Fig. 7.4 the switching time is reduced by use of a heavily doped \textit{n} buffer layer in the drift region near the collector. Because of much higher doping density in the buffer layer the injection efficiency of the collector junction and the minority carrier lifetime in the base region is reduced. The smaller excess carrier lifetime in the buffer layer sinks the excess holes, which speeds up the removal of holes from the drift region and therefore decreases the turn-off time. Nonpunch-through (NPT) IGBTs have higher carrier lifetimes and a low-doped shallow collector region, which affect their electrical characteristics. In order to prevent punch through, NPT IGBTs have a thicker drift region, which results in a higher base transit time. Therefore,
in NPT structure the carrier lifetime is kept more than that of a PT structure, which causes conductivity modulation of the drift region and reduces the on-state voltage drop.

7.3 Static Characteristics

In the IGBT structure of Fig. 7.2 if a negative voltage is applied to the collector, the junction between the \(p^+ \)-substrate and \(n^- \)-drift region becomes reverse-biased. The drift region is lightly doped and the depletion layer extends principally into the drift region. An open-base transistor exists between the \(p^+ \)-substrate, \(n^- \)-drift region, and the \(p^- \)-base region. The doping concentration \((N_D) \) and thickness of the \(n^- \)-drift region \((W_D) \) are designed to avoid the breakdown of this structure. The width of the drift region affects the forward voltage drop and therefore should be optimized for a desired breakdown voltage. The thickness of the drift region \((W_D) \) is chosen equal to the sum of one diffusion length \((L_p) \) and the width of the depletion layer at maximum applied voltage \((V_{max}) \):

\[
W_D = \sqrt{\frac{2eV_{max}}{qN_D} + L_p} \quad (7.1)
\]

When the gate is shorted to the emitter, no channel exists under the gate. Therefore, if a positive voltage is applied to the collector the junction between the \(p^- \)-base and \(n^- \)-drift region is reverse-biased and only a small leakage current flows through IGBT. Similar to a MOSFET the depletion layer extends into the \(p^- \)-base and \(n^- \)-drift region. The \(p^- \)-base doping concentration, which also controls the threshold voltage, is chosen to avoid punch through of the \(p^- \)-base to \(n^- \)-emitter. In ac circuit applications, which require identical forward and reverse blocking capability the drift-region thickness of the symmetrical IGBT shown in Fig. 7.2 is designed by use of Eq. 7.1 to avoid reach-through of the depletion layer to the junction between the \(p^+ \)-collector and the \(n^- \)-drift region. When IGBT is used in ac circuits, which do not require reverse blocking capability, a highly doped \(n^- \)-buffer layer is added to the drift region near the collector junction to form a PT IGBT. In this structure the depletion layer occupies the entire drift region and the \(n^- \)-buffer layer prevents reach-through of the depletion layer to the \(p^+ \)-collector layer. Therefore, the required thickness of the drift region is reduced, which reduces the on-state losses. However, the highly doped \(n^- \)-buffer layer and \(p^+ \)-collector layer degrade the reverse blocking capability to a very low value. Therefore, on-state characteristics of a PT IGBT can be optimized for a required forward blocking capability while the reverse blocking capability is neglected.

When a positive voltage is applied to the gate of an IGBT, a MOS channel is formed between the \(n^- \)-emitter and the \(n^- \)-drift region. Therefore, a base current is provided for the parasitic \(pnp \)-BJT. By applying a positive voltage between the collector and emitter electrodes of an \(n^- \)-type IGBT, minority carriers (holes) are injected into the drift region. The injected minority carriers reduce the resistivity of the drift region and also the on-state voltage drop resulting in a much higher current density compared to a power MOSFET.

If the shorting resistance between the base and emitter of the \(npn \)-transistor is small, the \(n^- \)-emitter \(p^- \)-base junction does not become forward-biased and therefore the parasitic \(npn \)-transistor is not active and can be deleted from the equivalent IGBT circuit. The analysis of the forward conduction characteristics of an IGBT is possible by use of the two equivalent circuit approaches shown in Fig. 7.5. The model based on a \(p \)-rectifier in series with a MOSFET shown in Fig. 7.5a is easy to analyze and gives a reasonable understanding of the IGBT operation. However, this model does not account for the hole-current component flowing into the \(p^- \)-base region. The junction between the \(p^- \)-base and the \(n^- \)-drift region is reverse-biased. This requires that the free carrier density be zero at this junction and therefore results in a different boundary condition for IGBT compared to those for a \(p \)-rectifier. The IGBT conductivity modulation in the drift region is identical to the \(p \)-rectifier near the collector junction, but it is less than a \(p \)-rectifier near the \(p^- \)-base junction. Therefore, the model based on a bipolar \(pnp \)-transistor driven by a MOSFET in Fig. 7.5a gives a more complete description of the conduction characteristics.

Analyzing the IGBT operation by use of these models shows that IGBT has one diode drop due to the parasitic diode. Below the diode knee voltage there is negligible current flow due to the lack of minority carrier injection from the collector. Also, by increasing the applied voltage between the gate and emitter the base of the internal bipolar transistor is supplied by more base current, which results in an increase in the collector current. The IGBT current shows saturation due to the pinch-off of the MOS channel, which limits the input base current of the bipolar transistor. The MOS channel of the IGBT reverse-biases the collector-base junction and forces the bipolar \(pnp \)-transistor to operate in its active region. The drift region is in high-level injection at the required current densities and wider \(n^- \)-drift region results in higher breakdown voltage.
Because of the very low gain of the pnp-BJT, the driver MOSFET in the equivalent circuit of the IGBT carries a major portion of the total collector current. Therefore, the IGBT on-state voltage drop as is shown in Fig. 7.6 consists of voltage drop across the collector junction, drop across the drift region, and the drop across the MOSFET portion. The low value of the drift-region conductivity modulation near the p-base junction causes a substantial drop across the JFET resistance of the MOSFET (V_{JFET}) in addition to the voltage drop across the channel resistance (V_{ch}) and the accumulation layer resistance (V_{acc}):

$$V_{\text{CE(on)}} = V_{p^+n} + V_{\text{drift}} + V_{\text{MOSFET}} \quad (7.2)$$

$$V_{\text{MOSFET}} = V_{\text{ch}} + V_{\text{JFET}} + V_{\text{acc}} \quad (7.3)$$

When the lifetime in the n^--drift region is large, the gain of the pnp-bipolar transistor is high and its collector current is much larger than the MOSFET current. Therefore, the voltage drop across the MOSFET component of IGBT is a small fraction of the total voltage drop. When lifetime control techniques are used to increase the switching speed, the current gain of the bipolar transistor is reduced and a greater portion of the current flows through the MOSFET channel and thus the voltage drop across the MOSFET increases. In order to decrease the resistance of the MOSFET current path, trench IGBTs can be used as is shown in Fig. 7.7. Extending the trench gate below the p-base and n^--drift region forms a channel between the n^+-emitter and the n^--drift region. This eliminates the JFET and accumulation layer resistance and thus reduces the voltage drop across the MOSFET component of IGBT, which results in superior conduction characteristics. By use of trench structure the IGBT cell density and latching current density are also improved.

7.4 Dynamic Switching Characteristics

7.4.1 Turn-on Characteristics

The switching waveforms of an IGBT in a clamped inductive circuit are shown in Fig. 7.8. The inductance-to-resistance (L/R) time constant of the inductive load is assumed to be large compared to the switching frequency and therefore can be considered as a constant current source I_{on}. The IGBT turn-on switching performance is dominated by its MOS structure. During t_{on} the gate current charges the constant input capacitance with a constant slope until the gate-emitter voltage reaches the threshold voltage $V_{\text{GE(th)}}$ of the device.
During t_{f1} load current is transferred from the diode into the device and increases to its steady-state value.

The gate voltage rise time and IGBT transconductance determine the current slope and as a result t_{r}. When the gate-emitter voltage reaches $V_{(GE(on)}$ that will support the steady-state collector current, collector-emitter voltage starts to decrease. After this there are two distinct intervals during IGBT turn-on. In the first interval the collector-to-emitter voltage drops rapidly as the gate-drain capacitance C_{gd} of the MOSFET portion of IGBT discharges. At low collector-emitter voltage C_{ps} increases. A finite time is required for high-level injection conditions to set in the drift region. The pnp-transistor portion of IGBT has a slower transition to its on-state than the MOSFET. The gate voltage starts rising again only after the transistor comes out of its saturation region into the linear region, when complete conductivity modulation occurs and the collector-emitter voltage reaches its final on-state value.

7.4.2 Turn-off Characteristics

Turn-off begins by removing the gate-emitter voltage. Voltage and current remain constant until the gate voltage reaches $V_{(GE(on)}$ to maintain the collector steady-state current as shown in Fig. 7.9. After this delay time ($t_{d(off)}$) the collector voltage rises, while the current is held constant. The gate resistance determines the rate of collector-voltage rise. As the MOS channel turns off, collector current decreases sharply during t_{fi2}. The MOSFET portion of IGBT determines the turn-off delay time $t_{d(off)}$ and the voltage rise time t_{rv}. When the collector voltage reaches the bus voltage, the freewheeling diode starts to conduct.

However, the excess stored charge in the n-drift region during on-state conduction must be removed for the device to turn off. The high minority-carrier concentration stored in the n-drift region supports the collector current after the MOS channel is turned off. Recombination of the minority carriers in the wide-base region gradually decreases the collector current and results in a current tail. Because there is no access to the base of the pnp-transistor, the excess minority carriers cannot be removed by reverse-biasing the gate. The t_{fi2} interval is long because the excess carrier lifetime in this region is normally kept high to reduce the on-state voltage drop. Because the collector-emitter voltage has reached the bus voltage in this interval a significant power loss occurs that increases with frequency. Therefore, the current tail limits the IGBT operating frequency and there is a trade-off between the on-state losses and faster switching times. For an on-state current of I_{on}, the magnitude of current tail, and time required for the collector current to decrease to 10% of its on-state value, turn-off (t_{off}) time, are approximated as:

$$I_c(t) = \frac{a_{pnp} I_{on} e^{-t/t_{si2}}}{a_{pnp}}$$ \hfill (7.4)

$$t_{off} = \tau_{HL} \ln(10a_{pnp})$$ \hfill (7.5)

where

$$a_{pnp} = \frac{1}{L_a}$$ \hfill (7.6)

is the gain of the bipolar pnp-transistor, l is the undepleted basewidth and L_a is the ambipolar diffusion length and it is assumed that the high-level lifetime (τ_{HL}) is independent of the minority carrier injection during the collector current decay.

Lifetime control techniques are used to reduce the lifetime (τ_{HL}) and the gain of the bipolar transistor (a_{pnp}). As a result the magnitude of the current tail and t_{off} decrease. However, the conductivity modulation decreases, which increases the on-state voltage drop in the drift region. Therefore, high-speed IGBTs have a lower current rating. Thermal diffusion of impurities such as gold and platinum introduces recombination centers, which reduce the lifetime. The device can also be irradiated with high-energy electrons to generate recombination centers. Electron irradiation introduces a uniform distribution of defects, which results in reduction of lifetime in the entire wafer and affects the conduction properties of the device. Another method of lifetime control is proton implantation, which can place defects at a specific depth. Therefore, it is possible to have a localized control of lifetime to improve the trade-off between the on-state voltage and switching speed of the device. The turn-off loss can be minimized by curtailing the current tail as a result of speeding up the recombination.
7.4.3 Latch-up of Parasitic Thyristor

A portion of the minority carriers injected into the drift region from the collector of an IGBT flows directly to the emitter terminal. The negative charge of electrons in the inversion layer attracts the majority of holes and generates the lateral component of hole current through the p-type body layer as shown in Fig. 7.10. This lateral current flow develops a voltage drop across the spreading resistance of the p-base region, which forward-biases the base-emitter junction of the npn-parasitic BJT. By designing a small spreading resistance, the voltage drop is lower than the built-in potential and therefore the parasitic thyristor between the p+ -collector region, n− -drift region, p-base region, and n+ -emitter does not latch up. Larger values of on-state current density produce a larger voltage drop, which causes injection of electrons from the emitter region into the p-base region and hence turn-on of the npn-transistor. When this occurs the pnp-transistor will turn on, and therefore the parasitic thyristor will latch up and the gate loses control over the collector current.

Under dynamic turn-off conditions the magnitude of the lateral hole current flow increases and latch-up can occur at lower on-state currents compared to the static condition. The parasitic thyristor latches up when the sum of the current gains of the npn- and pnp-transistors exceeds one. When the gate voltage is removed from IGBT with a clamped inductive load, its MOSFET component turns off and reduces the MOSFET current to zero very rapidly. As a result the drain-source voltage rises rapidly and is supported by the junction between the n−-drift region and the p-base region. The drift region has a lower doping and therefore the depletion layer extends more in the drift region. Hence, the current gain of the pnp-transistor portion, zpnp increases and a greater portion of the injected holes into the drift region will be collected at the junction of p-base and n−-drift regions. Therefore, the magnitude of the lateral hole current increases, which increases the lateral voltage drop. As a result the parasitic thyristor will latch up even if the on-state current is less than the static latch-up value.

Reducing the gain of the npn- or pnp-transistors can prevent the parasitic thyristor latch-up. A reduction in the gain of the pnp-transistor increases the IGBT on-state voltage drop. Therefore, in order to prevent the parasitic thyristor latch up it is better to reduce the gain of the npn-transistor component of IGBT. Reduction of carrier lifetime, use of buffer layer, and use of deep p+ -diffusion improve the latch-up immunity of IGBT. However, inadequate extension of the p+ -region may fail to prevent the device from latch-up. Also, care should be taken that the p+ -diffusion does not extend into the MOS channel because this causes an increase in the MOS threshold voltage.

7.5 IGBT Performance Parameters

The IGBTs are characterized by certain performance parameters. The manufacturers specify these parameters, which are described in what follows, in the IGBT data sheet. The important ratings of IGBTs are values that establish either a minimum or maximum limiting capability or limiting condition. The IGBTs cannot be operated beyond the maximum or minimum rating value, which is determined for a specified operating point and environment condition.

Collector-Emitter Blocking Voltage (BVLCE): This parameter specifies the maximum off-state collector-emitter voltage when the gate and emitter are shorted. Breakdown is specified at a specific leakage current and varies with temperature by a positive temperature coefficient.

Emitter-Collector Blocking Voltage (BVCE): This parameter specifies the reverse breakdown of the collector-base junction of the pnp-transistor component of IGBT.

Gate-Emitter Voltage (VGE): This parameter determines the maximum allowal gate-emitter voltage when the collector is shorted to emitter. The thickness and characteristics of the gate-oxide layer determine this voltage. The gate voltage should be limited to a much lower value to limit the collector current under fault conditions.

Continuous Collector Current (IC): This parameter represents the value of the dc current required to raise the junction to its maximum temperature from a specified case temperature. This rating is specified at a case temperature of 25 °C and maximum junction temperature of 150 °C. Because normal operating condition cause higher case temperatures, a plot is given to show the variation of this rating with case temperature.

Peak Collector Repetitive Current (ICR): Under transient conditions the IGBT can withstand higher peak currents.
compared to its maximum continuous current, which is described by this parameter.

Maximum Power Dissipation \((P_d)\): This parameter represents the power dissipation required to raise the junction temperature to its maximum value of 150 °C, at a case temperature of 25 °C. Normally a plot is provided to show the variation of this rating with temperature.

Junction Temperature \((T_J)\): Specifies the allowable range of the IGBT junction temperature during its operation.

Clamped Inductive Load Current \((I_{CLM})\): This parameter specifies the maximum repetitive current that IGBT can turn off under a clamped inductive load. During IGBT turn-on, the reverse recovery current of the freewheeling diode in parallel with the inductive load increases the IGBT turn-on switching loss.

Collector-Emitter Leakage Current \((I_{CES})\): This parameter determines the leakage current at the rated voltage and specific temperature when the gate is shorted to emitter.

Gate-Emitter Threshold Voltage \((V_{GE(th)})\): This parameter specifies the gate-emitter voltage range, where the IGBT is turned on to conduct the collector current. The threshold voltage has a negative temperature coefficient. Threshold voltage increases linearly with gate-oxide thickness and as the square root of the p-base doping concentration. Fixed surface charge at the oxide-silicon interface and mobile ions in the oxide shift the threshold voltage.

Collector-Emitter Saturation Voltage \((V_{CES(SAT)})\): This parameter specifies the collector-emitter voltage drop and is a function of collector current, gate voltage, and temperature. Reducing the resistance of the MOSFET channel and JFET region, and increasing the gain of the pnp-bipolar transistor can minimize the on-state voltage drop. The voltage drop across the MOSFET component of IGBT, which provides the base current of the pnp-transistor is reduced by a larger channel width, shorter channel length, lower threshold voltage, and wider gate length. Higher minority carrier lifetime and a thin n-epi region cause high carrier injection and reduce the voltage drop in the drift region.

Forward Transconductance \((g_{FE})\): Forward transconductance is measured with a small variation on the gate voltage, which linearly increases the IGBT collector current to its rated current at 100 °C. The transconductance of an IGBT is reduced at currents much higher than its thermal-handling capability. Therefore, unlike the bipolar transistors, the current-handling capability of IGBTs is limited by thermal consideration and not by its gain. At higher temperatures, the transconductance starts to decrease at lower collector currents. Therefore these features of transconductance protect the IGBT under short-circuit operation.

Total Gate Charge \((Q_G)\): This parameter helps to design a suitably sized gate-drive circuit and approximately calculate its losses. Because of the minority-carrier behavior of the device, the switching times cannot be approximately calculated by use of gate-charge value. This parameter varies as a function of the gate-emitter voltage.

Turn-on Delay Time \((t_d)\): This is defined as the time between 10% of gate voltage to 10% of the final collector current.

Rise Time \((t_r)\): This is the time required for the collector current to increase to 90% of its final value from 10% of its final value.

Turn-off Delay Time \((t_{off})\): This is the time between 90% of gate voltage to 10% of final collector voltage.

Fall Time \((t_f)\): This is the time required for the collector current to drop from 90% of its initial value to 10% of its initial value.

Input Capacitance \((C_{iss})\): The measured gate-emitter capacitance when collector is shorted to emitter. The input capacitance is the sum of the gate-emitter and the Miller capacitance. The gate-emitter capacitance is much larger than the Miller capacitance.

Output Capacitance \((C_{oss})\): The capacitance between collector and emitter when the gate is shorted to the emitter, which has the typical pnp-junction voltage dependency.

Reverse Transfer Capacitance \((C_{rss})\): The Miller capacitance between gate and collector, which has a complex voltage dependency.

Safe Operating Area (SOA): The safe operating area determines the current and voltage boundary within which the IGBT can be operated without destructive failure. At low currents the maximum IGBT voltage is limited by the open-base transistor breakdown. The parasitic thyristor latch-up limits the maximum collector current at low voltages. While IGBTs immune to static latch-up may be vulnerable to dynamic latch-up, operation in short-circuit and inductive load switching are conditions that would subject an IGBT to a combined voltage and current stress. A forward-biased safe operating area (FBSOA) is defined during the turn-on transient of the inductive load switching when both electron and hole current flow in the IGBT in the presence of high voltage across the device. The reverse-biased safe operating area (RBSOA) is defined during the turn-off transient, where only hole current flows in the IGBT with high voltage across it.

If the time duration of simultaneous high voltage and high current is long enough, the IGBT failure will occur because of thermal breakdown. However, if this time duration is short, the temperature rise due to power dissipation will not be enough to cause thermal breakdown. Under this condition the avalanche breakdown occurs at voltage levels lower than the breakdown voltage of the device. Compared to the steady-state forward blocking condition the much larger charge in the drift region causes a higher electric field and narrower depletion region at the p-base and n-drift junction. Under RBSOA conditions there is no electron in the space-charge region and therefore there is a larger increase in electric field than the FBSOA condition.
The IGBT SOA is indicated in Fig. 7.11. Under short switching times the rectangular SOA shrinks by an increase in the duration of the on-time. Thermal limitation is the reason for smaller SOA and the lower limit is set by dc operating conditions. The device switching loci under hard switching (dashed lines) and zero voltage or zero current switching (solid lines) is also indicated in Fig. 7.11. The excursion is much wider for switch-mode hard-switching applications than for the soft-switching case and therefore a much wider SOA is required for hard-switching applications. At present, IGBTs are optimized for hard-switching applications. In soft-switching applications the conduction losses of IGBT can be optimized at the cost of smaller SOA. In this case the p-base doping can be adjusted to result in a much lower threshold voltage and hence forward voltage drop. However, in hard-switching applications the SOA requirements dominate over forward voltage drop and switching time. Therefore, the p-base resistance should be reduced, which causes a higher threshold voltage. As a result, the channel resistance and forward voltage drop will increase.

7.6 Gate-Drive Requirements

The gate-drive circuit acts as an interface between the logic signals of the controller and the gate signals of the IGBT, which reproduces the commanded switching function at a higher power level. Nonidealities of the IGBT such as finite voltage and current rise and fall times, turn-on delay, voltage and current overshoots, and parasitic components of the circuit cause differences between the commanded and real waveforms. Gate-drive characteristics affect the IGBT nonidealities. The MOSFET portion of the IGBT drives the base of the pnp-transistor and therefore the turn-on transient and losses are greatly affected by the gate drive.

Due to lower switching losses, soft-switched power converters require gate drives with higher power ratings. The IGBT gate drive must have sufficient peak current capability to provide the required gate charge for zero current switching and zero voltage switching. The delay of the input signal to the gate drive should be small compared to the IGBT switching period and therefore the gate drive speed should be designed properly to be able to use the advantages of faster switching speeds of the new generation IGBTs.

7.6.1 Conventional Gate Drives

The first IGBT gate drives used fixed passive components and were similar to MOSFET gate drives. Conventional gate-drive circuits use a fixed gate resistance for turn-on and turn-off as shown in Fig. 7.12.

The turn-on gate resistor R_{gon} limits the maximum collector current during turn-on, and the turn-off gate resistor R_{goff} limits the maximum collector-emitter voltage. In order to decouple the dv_{ce}/dt and di_{c}/dt control an external capacitance C_g can be used at the gate, which increases the time constant of the gate circuit and reduces the di_{c}/dt as shown in Fig. 7.13. However, C_g does not affect the dv_{ce}/dt transient, which occurs during the Miller plateau region of the gate voltage.

7.6.2 New Gate-Drive Circuits

In order to reduce the delay time required for the gate voltage to increase from v_{gs} to $V_{ge}(th)$, the external gate capacitor can

![FIGURE 7.11 The IGBT safe operating area (SOA).](image1)

![FIGURE 7.12 Gate-drive circuit with independent turn-on and turn-off resistors.](image2)

![FIGURE 7.13 External gate capacitor for decoupling dv_{ce}/dt and di_{c}/dt during switching transient.](image3)
be introduced in the circuit only after \(V_{ge} \) reaches \(V_{ge}(th) \) as is shown in Fig. 7.14, where the collector current rise occurs. The voltage tail during turn-on transient is not affected by this method. In order to prevent shoot-through caused by accidental turn-on of IGBT due to noise, a negative gate voltage is required during the off-state. Low gate impedance reduces the effect of noise on the gate.

During the first slope of the gate voltage turn-on transient the rate of charge supply to the gate determines the collector-current slope. During the Miller-effect zone of the turn-on transient the rate of charge supply to the gate determines the collector-voltage slope. Therefore, the slope of the collector current, which is controlled by the gate resistance, strongly affects the turn-on power loss. Reduction in switching power loss requires low gate resistance. However, the collector-current slope also determines the amplitude of the conducted electromagnetic interference during turn-on switching transient. Lower electromagnetic interference generation requires higher values of gate resistance. Therefore, in conventional gate-drive circuits by selecting an optimum value for \(R_g \) there is a trade-off between lower switching losses and lower electromagnetic interference generation.

However, the turn-off switching of IGBT depends on the bipolar characteristics. Carrier lifetime determines the rate at which the minority carriers stored in the drift region recombine. The charge removed from the gate during turn-off has small influence on minority-carrier recombination. The tail current and \(di/dt \) during turn-off, which determine the turn-off losses, depend mostly on the amount of stored charge and the minority-carrier lifetime. Therefore, the gate-drive circuit has a minor influence on turn-off losses of the IGBT, while it affects the turn-on switching losses.

The turn-on transient is improved by use of the circuit shown in Fig. 7.15. The additional current source increases the gate current during the tail voltage time and thus reduces the turn-on loss. The initial gate current is determined by \(V_{gs}^+ \) and \(R_{gon} \), which are chosen to satisfy device electrical specifications and EMI requirements. After the collector current reaches its maximum value, the Miller effect occurs and the controlled-current source is enabled to increase the gate current to increase the rate of collector-voltage fall. This reduces the turn-on switching loss. Turn-off losses can only be reduced during the Miller effect and MOS turn-off portion of the turn-off transient, by reducing the gate resistance. However, this increases the rate of change of collector voltage, which strongly affects the IGBT latching current and RBSOA. During the turn-off period, the turn-off gate resistor \(R_{gon} \) determines the maximum rate of collector-voltage change. After the device turns off, turning on transistor \(T_1 \) prevents the spurious turn-on of IGBT by preventing the gate voltage from reaching the threshold voltage.

7.6.3 Protection

Gate-drive circuits can also provide fault protection of IGBT in the circuit. The fault-protection methods used in IGBT converters are different from their gate-turn-off thyristor (GTO) counterparts. In a GTO converter a crowbar is used for protection and as a result there is no current limiting. When the short-circuit is detected the control circuit turns on all the GTO switches in the converter, which results in opening of a fuse or circuit breaker on the dc input. Therefore, series \(di/dt \) snubbers are required to prevent rapid increase of the fault current and the snubber inductor has to be rated for large currents in the fault condition. However, IGBT has an important ability to intrinsically limit the current under overcurrent and short-circuit fault conditions, and the value of the fault current can be much larger than the nominal IGBT current. Thus IGBT has to be turned off rapidly after the fault occurs.

The magnitude of the fault current depends on the positive-gate bias voltage \(V_{gs}^+ \). A higher \(V_{gs}^+ \) is required to reduce conduction loss in the device, but this leads to larger fault currents. In order to decouple the trade-off limitation between conduction loss and fault-current level, a protection circuit can reduce the gate voltage when a fault occurs. However, this does not limit the peak value of the fault current, and therefore a fast fault-detection circuit is required to limit the peak value of the fault current. Fast integrated sensors in the gate-drive circuit are essential for proper IGBT protection.

Various methods have been studied to protect IGBTs under fault conditions. One of the techniques uses a capacitor to reduce the gate voltage when the fault occurs. However,
depending on the initial condition of the capacitor and its value, the IGBT current may reduce to zero and then turn on again. Another method is to softly turn off the IGBT after the fault and to reduce the overvoltage due to $\frac{di}{dt}$. Therefore, the overvoltage on IGBT caused by the parasitic inductance is limited while turning off large currents. The most common method of IGBT protection is collector-voltage monitoring or desaturation detection. The monitored parameter is the collector-emitter voltage, which makes fault detection easier compared to measuring the device current. However, voltage detection can be activated only after the complete turn off of IGBT. If the fault current increases slowly due to large fault inductance, the fault detection is difficult because the collector-emitter voltage will not change significantly. In order to determine whether the current that is being turned off is overcurrent or nominal current, the Miller voltage plateau level can be used. This method can be used to initiate soft turn-off and to reduce the overvoltage during overcurrents.

Special sense IGBTs have been introduced at low-power levels with a sense terminal to provide a current signal proportional to the IGBT collector current. A few active device cells are used to mirror the current carried by the other cells. Unfortunately, however, sense IGBTs are not available at high-power levels and there are problems related to the higher conduction losses in the sense device. The most reliable method to detect an overcurrent fault condition is to introduce a current sensor in series with the IGBT. The additional current sensor makes the power circuit more reliable method to detect the overvoltage caused by the parasitic inductance is limited while turning off large currents. The most common method of IGBT protection is collector-voltage monitoring or desaturation detection. The monitored parameter is the collector-emitter voltage, which makes fault detection easier compared to measuring the device current. However, voltage detection can be activated only after the complete turn off of IGBT. If the fault current increases slowly due to large fault inductance, the fault detection is difficult because the collector-emitter voltage will not change significantly. In order to determine whether the current that is being turned off is overcurrent or nominal current, the Miller voltage plateau level can be used. This method can be used to initiate soft turn-off and to reduce the overvoltage during overcurrents.

After the fault occurs the IGBT has to be safely turned off. Due to large $\frac{di}{dt}$ during turn-off, the overvoltage can be very large. Therefore, many techniques have been investigated to obtain soft turn-off. The most common method is to use a large turn-off gate resistor when the fault occurs. Another method to reduce the turn-off overvoltage is to lower the fault-current level by reducing the gate voltage before initiating the turn-off. A resistive voltage divider can be used to reduce the gate voltage during fault turn-off. For example, the gate-voltage reduction can be obtained by turning on simultaneously R_{off} and R_{on} in the circuit of Fig. 7.12. Another method is to switch a capacitor into the gate and rapidly discharge the gate during the occurrence of a fault. To prevent the capacitor from charging back up to the nominal on-state gate voltage, a large capacitor should be used, which may cause a rapid gate discharge. Also, a Zener diode can be used in the gate to reduce the gate voltage after a fault occurs, but the slow transient behavior of the Zener diode leads to large initial peak fault current. The power dissipation during a fault determines the time duration that the fault current can flow in the IGBT without damaging it. Therefore, the IGBT fault-endurance capability is improved by the use of fault-current limiting circuits to reduce the power dissipation in the IGBT under fault conditions.

7.7 Circuit Models

A high-quality IGBT model for circuit simulation is essential for improving the efficiency and circuit reliability in the design of power electronic circuits. Conventional models for power semiconductor devices simply described an abrupt or linear switching behavior and a fixed resistance during the conduction state. Low switching frequencies of power circuits made it possible to use these approximate models. However, moving to higher switching frequencies to reduce the size of a power electronic system requires high-quality power semiconductor device models for circuit simulation.

The n-channel IGBT consists of a pnp-bipolar transistor whose base current is provided by an n-channel MOSFET, as is shown in Fig. 7.1. Therefore, the IGBT behavior is determined by physics of the bipolar and MOSFET devices. Several effects dominate the static and dynamic device characteristics. The influence of these effects on a low-power semiconductor device is negligible and therefore they cannot be described by standard device models. The conventional circuit models were developed to describe the behavior of low-power devices, and therefore were not adequate to be modified for IGBT. The reason is that the bipolar transistor and MOSFET in the IGBT have a different behavior compared to their low-power counterparts; they also have different structures.

The currently available models have different levels of accuracy at the expense of speed. Circuit issues such as switching losses and reliability are strongly dependent on the device and require accurate device models. However, simpler models are only adequate for system-oriented issues such as the behavior of an electric motor driven by a pulsewidth modulation (PWM) converter. Finite-element models have high accuracy, but are slow and require internal device structure details. Macromodels are fast but have low accuracy, which depends on the operating point. Commercial circuit simulators have introduced one-dimensional (1D) physics-based models, which offer a compromise between the finite-element models and macromodels. The Hefner model and the Kraus model are such examples that have been implemented in Saber and there has been some effort to implement them in PSPICE. The Hefner model depends on the redistribution of charge in the drift region during transients. The Kraus model depends on the extraction of charge from the drift region by the electric field and emitter back-injection.

The internal BJT of the IGBT has a wide base, which is lightly doped to support the depletion region to have high blocking voltages. The excess carrier lifetime in the base region is low to have fast turn-off. However, low-power bipolar transistors have high excess carrier lifetime in the base, narrow base and high current gain. A finite base transit time is required for a change in the injected base charge to change the collector current. Therefore, quasi-static approximation cannot be used at high speeds and the transport of carriers
in the base should be described by ambipolar transport theory.

7.7.1 Input and Output Characteristics

The bipolar and MOSFET components of a symmetric IGBT are shown in Fig. 7.16. The components between the emitter (e), base (b), and collector (c) terminals correspond to the bipolar transistor and those between gate (g), source (s), and drain (d) are associated with MOSFET. The combination of the drain-source and gate-drain depletion capacitances is identical to the base-collector depletion capacitance, and therefore they are shown for the MOSFET components. The gate-oxide capacitance of the source overlap (C_{ox}) and source metallization capacitance (C_m) form the gate-source capacitance (C_{gs}). When the MOSFET is in its linear region the gate-oxide capacitance of the drain overlap (C_{oxid}) forms the gate-drain capacitance (C_{gd}). In the saturation region of MOSFET the equivalent series connection of gate-drain overlap oxide capacitance and the depletion capacitance of the gate-drain overlap (C_{gdj}) forms the gate-drain Miller capacitance. The gate-drain depletion width and the drain-source depletion width are voltage dependent, which has the same effect on the corresponding capacitances.

The most important capacitance in IGBT is the capacitance between the input terminal (g) and output terminal (a), because the switching characteristics are affected by this feedback.

$$C_{ga} = \frac{dQ_g}{dV_{ga}} = C_{ox} \frac{dV_{ox}}{dV_{ga}} \tag{7.7}$$

C_{ox} is determined by the oxide thickness and device area. The accumulation, depletion, and inversion states below the gate cause different states of charge and therefore different capacitance values.

The stored charge in the lightly doped wide base of the bipolar component of IGBT causes switching delays and switching losses. The standard quasi-static charge description is not adequate for IGBT because it assumes that the charge distribution is a function of the IGBT terminal voltage. However, the stored charge density ($p(x,t)$) changes with time and position and therefore the ambipolar diffusion equation must be used to describe the charge variation:

$$\frac{dP(x, t)}{dt} = -\frac{P(x, t)}{\tau_a} + D_a \frac{d^2P(x, t)}{dx^2} \tag{7.8}$$

The slope of the charge-carrier distribution determines the sum of electron and hole currents. The nonquasistatic behavior of the stored charge in the base of the bipolar component of IGBT results in the collector-emitter redistribution capacitance (C_{cer}). This capacitance dominates the output capacitance of IGBT during turn-off and describes the rate of change of the base-collector depletion layer with the rate of change of the base-collector voltage. However, the base-collector displacement current is determined by the gate-drain (C_{gdj}) and drain-source (C_{dsj}) capacitance of the MOSFET component.

7.7.2 Implementing the IGBT Model into a Circuit Simulator

Usually a netlist is employed in a circuit simulator such as Saber to describe an electrical circuit. Each component of the circuit is defined by a model template with the component terminal connection and the model parameters values. While Saber libraries provide some standard component models, the models can be generated by implementing the model equations in a defined Saber template. Electrical component models of IGBT are defined by the current through each component element as a function of component variables, such as terminal and internal node voltages and explicitly defined variables. The circuit simulator uses the Kirchhoff current law to solve for electrical component variables such that the total current into each node is equal to zero, while satisfying the explicitly defined component variables needed to describe the state of the device.

The IGBT circuit model is generated by defining the currents between terminal nodes as a nonlinear function of component variables and their rate of change. An IGBT circuit model is shown in Fig. 7.17. Compared to Fig. 7.16 the bipolar transistor is replaced by the two base and collector-current sources. There is a distributed voltage drop due to diffusion and drift in the base regions. The drift terms in the ambipolar diffusion equation depend on base and collector currents. Therefore, both of these currents generate the resistive voltage drop V_{ae} and R_p is placed at the emitter terminal in the IGBT circuit model. The capacitance of the emitter-base junction

![FIGURE 7.16 Symmetric IGBT half cell.](image)
(\(C_{eb}\)) is implicitly defined by the emitter-base voltage as a function of base charge; \(I_{\text{Iceb}}\) is the emitter-base capacitor current that defines the rate of change of the base charge. The current through the collector-emitter redistribution capacitance (\(I_{\text{ccer}}\)) is part of the collector current, which in contrast to \(I_{\text{css}}\) depends on the rate of change of the base-emitter voltage; \(I_{\text{bss}}\) is part of the base current that does not flow through \(C_{eb}\) and does not depend on the rate of change of base-collector voltage.

Impact ionization causes carrier multiplication in the high electric field of the base-collector depletion region. This carrier multiplication generates an additional base-collector current component (\(I_{\text{mult}}\)), which is proportional to \(I_c\), \(I_{\text{mos}}\), and the multiplication factor. The resulting Saber IGBT model should be able to describe accurately the experimental results for the range of static and dynamic conditions where IGBT operates. Therefore, the model can be used to describe the steady-state and dynamic characteristics under various circuit conditions.

The currently available models have different levels of accuracy at the expense of speed. Circuit issues such as switching losses and reliability are strongly dependent on the device and require accurate device models. However, simpler models are adequate for system-oriented issues such as the behavior of an electric motor driven by a PWM converter. Finite-element models have high accuracy, but are slow and require internal device structure details. Macromodels are fast but have low accuracy, which depends on the operating point. Commercial circuit simulators have introduced 1D physics-based models, which offer a compromise between the finite-element models and macromodels.

7.8 Applications

Power electronics evolution is a result of the evolution of power semiconductor devices. Applications of power electronics are still expanding in industrial and utility systems. A major challenge in designing power electronic systems is simultaneous operation at high power and high switching frequency. The advent of IGBTs has revolutionized power electronics by extending the power and frequency boundary. During the last decade the conduction and switching losses of IGBTs have been reduced in the process of transition from the first- to the third-generation IGBTs. The improved characteristics of the IGBTs have resulted in higher switching speed and lower energy losses. High-voltage IGBTs are expected to take the place of high-voltage GTO thyristor converters in the near future. To advance the performance beyond the third-generation IGBTs, the fourth-generation devices will require exploiting fine-line lithographic technology and employing the trench technology used to produce power MOSFETs with very low on-state resistance. Intelligent IGBT or intelligent power module (IPM) is an attractive power device integrated with circuits to protect against overcurrent, overvoltage, and overheating. The main application of IGBT is for use as a switching component in inverter circuits, which are used in both power supply and motor drive applications. The advantages of using IGBT in these converters are simplicity and modularity of the converter, simple gate drive, elimination of snubber circuits due to the square SOA, lower switching loss, improved protection characteristics in case of overcurrent and short-circuit fault, galvanic isolation of the modules, and simpler mechanical construction of the power converter. These advantages have made the IGBT the preferred switching device in the power range below 1 MW.

Power supply applications of IGBTs include uninterruptible power supplies (UPS) as is shown in Fig. 7.18, constant-voltage constant-frequency power supplies, induction heating systems, switch mode power supplies, welders (Fig. 7.19), cutters, traction power supplies, and medical equipment (CT, X-ray). Low-noise operation, small size, low cost and high accuracy are characteristics of the IGBT converters in these applications. Examples of motor drive applications include the variable-voltage variable-frequency inverter as is
shown in Fig. 7.20. The IGBTS have been introduced at high voltage and current levels, which has enabled their use in high-power converters utilized for medium-voltage motor drives. The improved characteristics of the IGBTs have introduced power converters in megawatt power applications such as traction drives. One of the critical issues in realizing high-power converters is the reliability of the power switches. The devices used in these applications must be robust and capable of withstanding faults long enough for a protection scheme to be activated. The hard-switching voltage source power converter is the most commonly used topology. In this switch-mode operation the switches are subjected to high switching stresses and high-switching power loss that increase linearly with the switching frequency of the pulsewidth modulation (PWM). The resulting switching loci in the $v_t - i_t$ plane is shown by the dotted lines in Fig. 7.11. Because of simultaneous large switch voltage and large switch current, the switch must be capable of withstanding high switching stresses with a large SOA. The requirement of being able to withstand large stresses results in design compromises in other characteristics of the power semiconductor device. Often forward voltage drop and switching speed are sacrificed for enhanced short-circuit capability. Process parameters of the IGBT such as threshold voltage, carrier lifetime, and the device thickness can be varied to obtain various combinations of SOA, on-state voltage, and switching time. However, there is very little overlap in the optimum combination for more than one performance parameter. Therefore, improved performance in one parameter is achieved at the cost of other parameters.

In order to reduce the size, the weight, and the cost of circuit components used in a power electronics converter very high switching frequencies of the order of a few megahertz are being contemplated. In order to be able to increase the switching frequency, the problems of switch stresses, switching losses and the EMI associated with switch-mode applications need to be solved. Use of soft-switching converters reduces the problems of high dv/dt and high di/dt by use of external inductive and capacitive components to shape the switching trajectory of the device. The device-switching loci resulting from soft switching is shown in Fig. 7.11, where significant reduction in switching stress can be noticed. The traditional snubber circuits achieve this goal without the added control complexity, but the power dissipation in these snubber circuits can be large and limit the switching frequency of the converter. Also, passive components significantly add to the size, weight, and cost of the converter at high power levels. Soft switching uses lossless resonant circuits, which solves the problem of power loss in the snubber circuit, but increases the conduction loss. Resonant transition circuits eliminate the problem of high peak device stress in the soft-switched converters. The main drawback of these circuits is the increased control complexity required to obtain the resonant switching transition. The large number of circuit variables to be sensed in such power converters can affect their reliability. With short-circuit capability no longer being the primary concern, designers can push the performance envelope for their circuits until the device becomes the limiting factor once again.

The transient response of the conventional volts/hertz induction motor drive is sluggish because both torque and flux are functions of stator voltage and frequency. Use of vector or field-oriented control methods makes the performance of the induction motor drive almost identical to that of a separately excited dc motor. Therefore, the transient response is similar to a dc machine, where torque and flux can be controlled in a decoupled manner. Vector-controlled induction motors with shaft encoders or speed sensors have been widely applied in combination with voltage-source PWM inverters using IGBT modules. According to the specification of the new products, vector-controlled induction motor drive systems ranging from kilowatts to megawatts provide a broad range of speed control, constant torque operation, and high starting torque.
Because of their simple gate drives and modular packaging, IGBTs led to simpler construction of power electronic circuits. This feature has lead to a trend to standardize and modularize power electronic circuits. Simplification of the overall system design and construction and significant cost reduction are the main implications of this approach. With these goals the Power Electronics Building Block (PEBB) program has been introduced, where the entire power electronic converter system is reduced to a single block. Similar modular power electronic blocks are commercially available at low power levels in the form of power-integrated circuits. At higher power levels, these blocks have been realized in the form of intelligent power modules and power blocks. However, these high-power modules do not encompass entire power electronic systems such as motor drives and UPS. The aim of the PEBB program is to realize the whole power-handling system within standardized blocks. A PEBB is a universal power processor that changes any electrical power input to any desired form of voltage, current and frequency output. A PEBB is a single package with a multifunction controller that replaces the complex power electronic circuits with a single device and therefore reduces the development and design costs of the complex power circuits and simplifies the development and design of large electric power systems.

The applications of power electronics are varied and various applications have their own specific design requirement. There is a wide choice of available power devices. Because of physical, material and design limitations none of the currently available devices behave as an ideal switch, which should block arbitrarily large forward and reverse voltages with zero current in the off-state, conduct arbitrarily large currents with zero voltage drop in the on-state, and have negligible switching time and power loss. Therefore, power electronic circuits should be designed by considering the capabilities and limitations of available devices. Traditionally, there has been limited interaction between device manufacturers and circuit designers. Thus manufacturers have been fabricating generic power semiconductor devices with inadequate consideration of the specific applications where the devices are used. The diverse nature of power electronics does not allow the use of generic power semiconductor devices in all applications as it leads to nonoptimal systems. Therefore, the devices and circuits need to be optimized at the application level. Soft switching topologies offer numerous advantages over conventional hard-switching applications such as reduced switching stress and EMI, and higher switching speed at reduced power loss. The IGBTs behave dissimilarly in the two circuit conditions. As a result devices optimized for hard-switching conditions do not necessarily give the best possible performance when used in soft-switching circuits. In order to extract maximum system performance, it is necessary to develop IGBTs suited for specific applications. These optimized devices need to be manufacturable and cost effective in order to be commercially viable.

References
7. Clemente, S. et al., IGBT Characteristics, IR Applications Note AN-983A.
8.1 Introduction

The efficiency, capacity, and ease of control of power converters depend mainly on the power devices employed. Power devices, in general, belong to either bipolar-junction type or field-effect type and each one has its advantages and disadvantages. The silicon controlled rectifier (SCR), also known as a thyristor, is a popular power device that has been used over the past several years. It has a high current density and a low forward voltage drop, both of which make it suitable for use in large power applications. The inability to turn off through the gate and the low switching speed are the main limitations of an SCR. The gate turn-off (GTO) thyristor was proposed as an alternative to SCR. However, the need for a higher gate turn-off current limited its application.

The power MOSFET has several advantages such as high input impedance, ease of control, and higher switching speeds. Lower current density and higher forward drop limited the device to low-voltage and low-power applications. An effort to combine the advantages of bipolar junction and field-effect structures has resulted in hybrid devices such as the insulated gate bipolar Transistor (IGBT) and the MOS controlled thyristor (MCT). While an IGBT is an improvement over a bipolar junction transistor (BJT) using a MOSFET to turn on and turn off current, an MCT is an improvement over a thyristor with a pair of MOSFETs to turn on and turn off current. The MCT overcomes several of the limitations of the existing power devices and promises to be a better switch for the future. While there are several devices in the MCT family with distinct combinations of channel and gate structures [1],

8.2 Equivalent Circuit and Switching Characteristics

8.2.1 Turn-on and Turn-off

8.3 Comparison of MCT and Other Power Devices

8.4 Gate Drive for MCTs

8.5 Protection of MCTs

8.6 Simulation Model of an MCT

8.7 Generation-1 and Generation-2 MCTs

8.8 N-channel MCT

8.9 Base Resistance-Controlled Thyristor

8.10 MOS Turn-Off Thyristor

8.11 Applications of PMCT

8.12 Conclusions

8.13 Appendix

References
one type, called the P-channel MCT, has been widely reported and is discussed here. Because the gate of the device is referred to with respect to the anode rather than the cathode, it is sometimes referred to as a complementary MCT (C-MCT) [2]. Harris Semiconductors (Intersil) originally made the MCTs, but the MCT division was sold to Silicon Power Corporation (SPCO), which has continued the development of MCTs.

8.2 Equivalent Circuit and Switching Characteristics

The SCR is a 4-layer \textit{pnpn} device with a control gate, and applying a positive gate pulse turns it on when it is forward-biased. The regenerative action in the device helps to speed up the turn-on process and to keep it in the “ON” state even after the gate pulse is removed. The MCT uses an auxiliary MOS device (PMOSFET) to turn on and this simplifies the gate control. The turn-on has all the characteristics of a power MOSFET. The turn-off is accomplished using another MOSFET (NMOSFET), which essentially diverts the base current of one of the BJTs and breaks the regeneration.

The transistor-level equivalent circuit of a P-channel MCT and the circuit symbol are shown in Fig. 8.1. The cross section of a unit cell is shown in Fig. 8.2. The MCT is modeled as an SCR merged with a pair of MOSFETs. The SCR consists of the bipolar junction transistors (BJTs) \(Q_1 \) and \(Q_2 \), which are interconnected to provide regenerative feedback such that the transistors drive each other into saturation. Of the two MOSFETs, the PMOS located between the collector and emitter of \(Q_2 \) helps to turn the SCR on, and the NMOS located across the base-emitter junction of \(Q_2 \) turns it off. In the actual fabrication, each MCT is made up of a large number (~100,000) cells, each of which contains a wide-base \textit{nnp} transistor and a narrow-base \textit{pnp} transistor. While each \textit{pnp} transistor in a cell is provided with an N-channel MOSFET across its emitter and base, only a small percentage (~4%) of \textit{pnp} transistors are provided with P-channel MOSFETs across their emitters and collectors. The small percentage of PMOS cells in an MCT provides just enough current for turn-on and the large number of NMOS cells provide plenty of current for turn-off.
8.2.1 Turn-on and Turn-off

When the MCT is in the forward blocking state, it can be turned on by applying a negative pulse to its gate with respect to the anode. The negative pulse turns on the PMOSFET (Off-FET) whose drain current flows through the base-emitter junction of Q1 (npn) thereby turning it on. The regenerative action within Q1 − Q2 turns the MCT on into full conduction within a very short time and maintains it even after the gate pulse is removed. The MCT turns on without a plasma-spreading phase giving a high \(\frac{dl}{dt} \) capability and ease of overcurrent protection. The on-state resistance of an MCT is slightly higher than that of an equivalent thyristor because of the degradation of the injection efficiency of the \(N^+ \) emitter/p-base junction. Also, the peak current rating of an MCT is much higher than its average or rms current rating.

An MCT will remain in the “ON” state until the device current is reversed or a turn-off pulse is applied to its gate. Applying a positive pulse to its gate turns off a conducting MCT. The positive pulse turns on the NMOSFET (On-FET), thereby diverting the base current of Q2 (pnp) away to the anode of the MCT and breaking the latching action of the SCR. This stops the regenerative feedback within the SCR and turns the MCT off. All the cells within the device are to be turned off at the same time to avoid a sudden increase in current density. When the Off-FETs are turned on, the SCR section is heavily shorted and this results in a high \(\frac{dV}{dt} \) rating for the MCT. The highest current that can be turned off with the application of a gate bias is called the “maximum controllable current.” The MCT can be gate controlled if the device current is less than the maximum controllable current. For smaller device currents, the width of the turn-off pulse is not critical. However, for larger currents, the gate pulse has to be wider and more often has to occupy the entire off-period of the switch.

8.3 Comparison of MCT and Other Power Devices

An MCT can be compared to a power MOSFET, a power BJT, and an IGBT of similar voltage and current ratings. The operation of the devices is compared under on-state, off-state, and transient conditions. The comparison is simple and very comprehensive.

The current density of an MCT is \(\approx 70\% \) higher than that of an IGBT having the same total current [2]. During its on-state, an MCT has a lower conduction drop compared to other devices. This is attributed to the reduced cell size and the absence of emitter shorts present in the SCR within the MCT. The MCT also has a modest negative temperature coefficient at lower currents with the temperature coefficient turning positive at larger current [2]. Figure 8.3 shows the conduction drop as a function of current density. The forward drop of a 50-A MCT at 25 °C is around 1.1 V, while that for a comparable IGBT is over 2.5 V. The equivalent voltage drop calculated from the value of \(t_{on} \) (ON) for a power MOSFET will be much higher. However, the power MOSFET has a much lower delay time (30 ns) compared to that of an MCT (300 ns). The turn-on of a power MOSFET can be so much faster than an MCT or an IGBT therefore, the switching losses would be negligible compared to the conduction losses. The turn-on of an IGBT is intentionally slowed down to control the reverse recovery of the freewheeling diode used in inductive switching circuits [3].

The MCT can be manufactured for a wide range of blocking voltages. Turn-off speeds of MCTs are supposed to be higher as initially predicted. The turn-on performance of Generation-2 MCTs are reported to be better compared to Generation-1 devices. Even though the Generation-1 MCTs have higher turn-off times compared to IGBTs, the newer ones with higher radiation (hardening) dosage have comparable turn-off times. At present, extensive development activity in IGBTs has resulted in high-speed switched mode power supply (SMPS) IGBTs that can operate at switching speeds \(\approx 150 \) kHz [4]. The turn-off delay time and the fall time for an MCT are much higher compared to a power MOSFET, and they are found to increase with temperature [2]. Power MOSFETs becomes attractive at switching frequencies above 200 kHz, and they have the lowest turn-off losses among the three devices.

The turn-off safe operating area (SOA) is better in the case of an IGBT than an MCT. For an MCT, the full switching current is sustainable at \(\approx 50 \) to 60% of the breakdown voltage rating, while for an IGBT it is about 80%. The use of capacitive snubbers becomes necessary to shape the turn-off locus of an
MCT. The addition of even a small capacitor improves the SOA considerably.

8.4 Gate Drive for MCTs

The MCT has a MOS gate similar to a power MOSFET or an IGBT and hence it is easy to control. In a PMCT, the gate voltage must be applied with respect to its anode. A negative voltage below the threshold of the On-FET must be applied to turn on the MCT. The gate voltage should fall within the specified steady-state limits in order to give a reasonably low delay time and to avoid any gate damage due to overvoltage [3]. Similar to a GTO, the gate voltage rise-time has to be limited to avoid hot spots (current crowding) in the MCT cells. A gate voltage less than $-5\,\text{V}$ for turn-off and greater than $10\,\text{V}$ for turn-on ensures proper operation of the MCT. The latching of the MCT requires that the gate voltage be held at a positive level in order to keep the MCT turned off.

Because the peak-to-peak voltage levels required for driving the MCT exceeds those of other gate-controlled devices, the use of commercial drivers is limited. The MCT can be turned on and off using a push-pull pair with discrete NMOS–PMOS devices, which, in turn, are driven by commercial integrated circuits (ICs). However, some drivers developed by MCT manufacturers are not commercially available [3].

A Baker’s clamp push-pull can also be used to generate gate pulses of negative and positive polarity of adjustable width for driving the MCT [5–7]. The Baker’s clamp ensures that the push-pull transistors will be in the quasi-saturated state prior to turn-off and this results in a fast switching action. Also, the negative feedback built into the circuit ensures satisfactory operation against variations in load and temperature. A similar circuit with a push-pull transistor pair in parallel with a pair of power BJTs is available [8]. An intermediate section, with a BJT that is either cut off or saturated, provides -10 and $+15\,\text{V}$ through potential division.

8.5 Protection of MCTs

8.5.1 Paralleling of MCTs

Similar to power MOSFETs, MCTs can be operated in parallel. Several MCTs can be paralleled to form larger modules with only slight derating of the individual devices provided the devices are matched for proper current sharing. In particular, the forward voltage drops of individual devices have to be matched closely.

8.5.2 Overcurrent Protection

The anode-to-cathode voltage in an MCT increases with its anode current and this property can be used to develop a protection scheme against overcurrent [5, 6]. The gate pulses to the MCT are blocked when the anode current and hence the anode-to-cathode voltage exceeds a preset value. A Schmitt trigger comparator is used to allow gate pulses to the MCT when it is in the process of turning on, during which time the anode voltage is relatively large and decreasing.

8.5.2.1 Snubbers

As with any other power device, the MCT is to be protected against switching-induced transient voltage and current spikes by using suitable snubbers. The snubbers modify the voltage and current transients during switching such that the switching trajectory is confined within the safe operating area (SOA). When the MCT is operated at high frequencies, the snubber increases the switching loss due to the delayed voltage and current responses. The power circuit of an MCT chopper including an improved snubber circuit is shown in Fig. 8.4 [5, 7]. The turn-on snubber consists of L_s and D_{LS} and the turn-off snubber consists of R_s, C_s, and D_{CS}. The series-connected turn-on snubber reduces the rate of change of the anode current di_a/dt. The MCT does not support V_s until the current through the freewheeling diode reaches zero at turn-on. The turn-off snubber helps to reduce the peak power and the total power dissipated by the MCT by reducing the voltage across the MCT when the anode current decays to zero. The analysis and design of the snubber and the effect of the snubber on switching loss and electromagnetic interference are given in References [5] and [7]. An alternative snubber configuration for the two MCTs in an ac-ac converter has also been reported [8]. This snubber uses only one capacitor and one inductor for both the MCT switches (PMCT and NMCT) in a power-converter leg.

![FIGURE 8.4](image-url) An MCT chopper with turn-on and turn-off snubbers.
8.6 Simulation Model of an MCT

The operation of power converters can be analyzed using PSpICE and other simulation software. As it is a new device, models of MCTs are not provided as part of the simulation libraries. However, an appropriate model for the MCT would be helpful in predicting the performance of novel converter topologies and in designing the control and protection circuits. Such a model must be simple enough to keep the simulation time and effort at a minimum, and must represent most of the device properties that affect the circuit operation. The PSpICE models for Harris PMCTs are provided by the manufacturer and can be downloaded from the internet. However, a simple model presenting most of the characteristics of an MCT is available [9, 10]. It is derived from the transistor-level equivalent circuit of the MCT by expanding the SCR model already reported the literature. The improved model [10] is capable of simulating the breakover and breakdown characteristics of an MCT and can be used for the simulation of high-frequency converters.

8.7 Generation-1 and Generation-2 MCTs

The Generation-1 MCTs were commercially introduced by Harris Semiconductors in 1992. However, the development of Generation-2 MCTs is continuing. In Gen-2 MCTs, each cell has its own turn-on field-effect transistor (FET). Preliminary test results on Generation-2 devices and a comparison of their performance with those of Generation-1 devices and high-speed IGBTs are available [11, 12]. The Generation-2 MCTs have a lower forward drop compared to the Generation-1 MCTs. They also have a higher \(\frac{di}{dt} \) rating for a given value of capacitor used for discharge. During hard switching, the fall time and the switching losses are lower for the Gen-2 MCTs. The Gen-2 MCTs have the same conduction loss characteristics as Gen-1 with drastic reductions in turn-off switching times and losses [13].

Under zero-current switching conditions, Gen-2 MCTs have negligible switching losses [13]. Under zero-voltage switching, the turn-off losses in a Gen-2 device are one-half to one-fourth (depending on temperature and current level) the turn-off losses in Gen-1 devices. In all soft-switching applications, the predominant loss, namely, the conduction loss, reduces drastically allowing the use of fewer switches in a module.

8.8 N-channel MCT

The PMCT discussed in this chapter uses an NMOSFET for turn-off and this results in a higher turn-off current capability. The PMCT can only replace a P-channel IGBT and inherits all the limitations of a P-channel IGBT. The results of a 2D simulation show that the NMCT can have a higher controllable current [13]. It is reported that NMCT versions of almost all Harris PMCTs have been fabricated for analyzing the potential for a commercial product [3]. The NMCTs are also being evaluated for use in zero-current soft-switching applications. However, the initial results are not quite encouraging in that the peak turn-off current of an NMCT is one-half to one-third of the value achievable in a PMCT. It is hoped that the NMCTs will eventually have a lower switching loss and a larger SOA as compared to PMCTs and IGBTs.

8.9 Base Resistance-Controlled Thyristor [14]

The base resistance-controlled thyristor (BRT) is another gate-controlled device that is similar to the MCT but with a different structure. The Off-FET is not integrated within the \(p \)-base region but is formed within the \(n \)-base region. The diverter region is a shallow \(p \)-type junction formed adjacent to the \(p \)-base region of the thyristor. The fabrication process is simpler for this type of structure. The transistor level equivalent circuit of a BRT is shown in Fig. 8.5.

The BRT will be in the forward blocking state with a positive voltage applied to the anode and with a zero gate bias. The forward blocking voltage will be equal to the breakdown voltage of the open-base \(pnp \) transistor. A positive gate bias turns on the BRT. At low current levels, the device behaves similarly to an IGBT. When the anode current increases, the operation changes to thyristor mode resulting in a low forward

![Figure 8.5](image-url)
drop. Applying a negative voltage to its gate turns off the BRT. During the turn-off process, the anode current is diverted from the N^+ emitter to the diverter. The BRT has a current tail during turn-off that is similar to an MCT or an IGBT.

8.10 MOS Turn-Off Thyristor [15]

The MOS turn-off (MTO) thyristor or the MTOT is a replacement for the GTO and it requires a much smaller gate drive. It is more efficient than a GTO, it can have a maximum blocking voltage of about 9 kV, and it will be used to build power converters in the 1- to 20-MVA range. Silicon Power Corporation (SPCO) manufactures the device.

The transistor-level equivalent circuit of the MTOT (hybrid design) and the circuit symbol are shown in Fig. 8.6. Applying a current pulse at the turn-on gate (G1), as with a conventional GTO, turns on the MTOT. The turn-on action, including regeneration, is similar to a conventional SCR. Applying a positive voltage pulse to the turn-off gate (G2), as with an MCT, turns off the MTOT. The voltage pulse turns on the FET, thereby shorting the emitter and base of the npn transistor and breaking the regenerative action. The MTOT is a faster switch than a GTO in that it is turned off with a reduced storage time compared to a GTO. The disk-type construction allows double-side cooling.

8.11 Applications of PMCT

The MCTs have been used in various applications, some of which are in the area of ac-dc and ac-ac conversion where the input is 60-Hz ac. Variable power factor operation was achieved using the MCTs as a force-commutated power switch [5]. The power circuit of an ac voltage controller capable of operating at a leading, lagging, and unity power factor is shown in Fig. 8.7. Because the switching frequency is low, the switching losses are negligible. Because the forward drop is low, the conduction losses are also small. The MCTs are also used in circuit breakers.

8.11.1 Soft-switching

The MCT is intended for high-frequency switching applications where it is supposed to replace a MOSFET or an IGBT. Similar to a Power MOSFET or an IGBT, the switching losses will be high at high switching frequencies. The typical characteristics of an MCT during turn-on and turn-off under hard switching (without snubber) are shown in Fig. 8.8. During turn-on and turn off, the device current and voltage take a finite time to reach their steady-state values. Each time the device changes state, there is a short period during which the voltage and current variations overlap. This results in a transient power loss that contributes to the average power loss.
Soft-switching converters are being designed primarily to enable operation at higher switching frequencies. In these converters, the power devices switch at zero voltage or zero current, thereby eliminating the need for a large safe operating area (SOA) and at the same time eliminating the switching losses entirely. The MCT converters will outperform IGBT and power MOSFET converters in such applications by giving the highest possible efficiency. In soft-switching applications, the MCT will have only conduction loss, which is low and is close to that in a power diode with similar power ratings [12]. The Generation-1 MCTs did not turn on rapidly in the vicinity of zero anode-cathode voltage and this posed a problem in soft-switching applications of an MCT. However, Generation-2 MCTs have enhanced dynamic characteristics under zero voltage soft switching [16]. In an MCT, the PMOS On-FET together with the pnp transistor constitute a p-IGBT. An increase in the number of turn-on cells (decrease in the on-resistance of the p-IGBT) and an enhancement of their distribution across the MCT active area enable the MCT to turn on at a very low transient voltage allowing zero voltage switching (ZVS). During zero voltage turn-on, a bipolar device such as the MCT takes more time to establish conductivity modulation. Before the device begins to conduct fully, a voltage spike appears, thus causing a modest switching loss [12]. Reducing the tail-current amplitude and duration by proper circuit design can minimize the turn-off losses in soft-switching cases.

8.11.2 Resonant Converters

Resonant and quasi-resonant converters are known for their reduced switching loss [17]. Resonant converters with zero current switching are built using MCTs and the circuit of one such, a buck-converter, is shown in Fig. 8.9. The resonant commutating network consisting of L_r, C_r, auxiliary switch T_r, and diode D_r enables the MCT to turn off under zero current. The MCT must be turned off during the conduction period of D_z. Commutating switch T_r must be turned off when the resonant current reaches zero.

A resonant dc link circuit with twelve parallel MCTs has been reported [18]. In this circuit, the MCTs switch at zero-voltage instants. The elimination of the switching loss allows operation at higher switching frequencies, which in turn increases the power density and offers better control of the spectral content. The use of MCTs with the same forward drop provides good current sharing.

![FIGURE 8.8](image) The MCT turn-off and turn-on waveforms under hard switching.

![FIGURE 8.9](image) Power circuit of MCT resonant buck-converter.
The MCTs are also used in ac-resonant-link converters with pulse density modulation (PDM) [19]. The advantages of the PDM converter, such as zero-voltage switching, combined with those of the MCT make the PDM converter a suitable candidate for many ac-ac converter applications. In an ac-ac PDM converter, a low-frequency ac voltage is obtained by switching the high-frequency ac link at zero-crossing voltages. Two MCTs with reverse-connected diodes form a bidirectional switch that is used in the circuit. A single capacitor was used as a simple snubber for both MCTs in the bidirectional switch.

8.12 Conclusions

The MCT is a power switch with a MOS gate for turn-on and turn-off. It is derived from a thyristor by adding the features of a MOSFET. It has several advantages compared to modern devices such as the power MOSFET and the IGBT. In particular, the MCT has a low forward drop and a higher current density, which are required for high-power applications. The characteristics of Generation-2 MCTs are better than those of Generation-1 MCTs. The switching performance of Generation-2 MCTs is comparable to that of the IGBTs. However, with the development of high-speed IGBTs, it is yet to be seen which of the two devices will be dominant. Silicon Power Corporation is developing both PMCTs and NMCTs. A hybrid version of the MOS turn-off thyristor (MTOT) also is available. The data on MTOT and some preliminary data on PMCTs and NMCTs are available on the Internet.

Acknowledgment

The author is grateful to Ms. Jing He and Mr. Rahul Patil for their assistance in collecting the reference material for this chapter.

8.13 Appendix

The following is a summary of the specifications on a 600 V/150 A PMCT made by Silicon Power Corporation:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Off-State Voltage, V_{DRM}</td>
<td>-600 V</td>
</tr>
<tr>
<td>Peak Reverse Voltage, V_{RRM}</td>
<td>$+40 \text{ V}$</td>
</tr>
<tr>
<td>Continuous Cathode Current, ($T = +90^\circ \text{C}$), I_{K90}</td>
<td>150 A</td>
</tr>
<tr>
<td>Non-Repetitive Peak Cathode Current, I_{KSM}</td>
<td>5000 A</td>
</tr>
<tr>
<td>Peak Controllable Current, I_{KC}</td>
<td>300 A</td>
</tr>
<tr>
<td>Gate to Anode Voltage (Continuous), V_{GA}</td>
<td>$\pm 15 \text{ V}$</td>
</tr>
<tr>
<td>Gate to Anode Voltage (Peak), V_{GAM}</td>
<td>$\pm 20 \text{ V}$</td>
</tr>
<tr>
<td>Rate of Change of Voltage ($V_{GA} = 15 \text{ V}$), dv/dt</td>
<td>10 kV/\mu s</td>
</tr>
<tr>
<td>Rate of Change of Current, di/dt</td>
<td>80 kA/\mu s</td>
</tr>
<tr>
<td>Peak Off-State Blocking Current (I_{DRM}) ($V_{KA} = -600 \text{ V}$, $V_{GA} = +15 \text{ V}$, $Tc = +25^\circ \text{C}$)</td>
<td>$200 \mu \text{A}$</td>
</tr>
<tr>
<td>On State Voltage (V_{TM}) ($I_{K} = 100 \text{ A}$, $V_{GA} = -10 \text{ V}$, $Tc = +25^\circ \text{C}$)</td>
<td>1.3 V</td>
</tr>
</tbody>
</table>

References

9

Static Induction Devices

Bogdan M. Wilamowski, Ph.D.
College of Engineering,
University of Idaho, Boise,
ID 83712 USA

Summary
Several devices from the static induction family including static induction transistors (SIT), static induction diodes (SID), static induction thyristors, lateral punch-through transistors (LPTT), static induction transistor logic (SITL), static induction MOS transistors (SIMOS), and space charge limiting load (SCLL) are described. The theory of operation of static induction devices is given for both a current controlled by a potential barrier and a current controlled by space charge. The new concept of a punch-through emitter (PTE), which operates with majority carrier transport, is presented.

9.1 Introduction
Static induction devices were invented by Nishizawa [28]. The idea was so innovative that the establishment in the solid-state electronics community at the time had difficulty understanding and accepting this discovery. Japan was the only country where static induction family devices were successfully fabricated [14]. The number of devices in this family continues to grow with time. Static induction transistors can operate with a power of 100 kW at 100 kHz or 10 W at 10 GHz. Static induction transistor logic had switching energy 100 times smaller than its I^2L competitor [8, 9]. The static induction thyristor has many advantages over the traditional SCR, and the static induction diode exhibits high switching speed, large reverse voltage, and low forward voltage drops.

9.2 Theory of Static Induction Devices
The cross section of the static induction transistor is shown in Fig. 9.1, while its characteristics are shown in Fig. 9.2. An induced electrostatically potential barrier controls the current in static induction devices. The derivations of formulas will be done for an n-channel device, but the obtained results with a little modification also can be applied to p-channel devices.

For a small electrical field existing in the vicinity of the potential barrier, the drift and diffusion current can be approximated by

$$I_n = -q\mu_n \frac{dq(x)}{dx} + qD_n \frac{dn(x)}{dx}$$

(9.1)

Copyright © 2001 by Academic Press.
All rights of reproduction in any form reserved.
where \(D_n = \mu_n V_T \) and \(V_T = kT/q \). By multiplying both sides of the equation by \(\exp(-\phi(x)/V_T) \) and rearranging

\[
J_n \exp\left(-\frac{\phi(x)}{V_T}\right) = qD_n \frac{d}{dx} \left[n(x) \exp\left(-\frac{\phi(x)}{V_T}\right)\right]
\]

(9.2)

By integrating from \(x_1 \) to \(x_2 \), one can obtain

\[
J_n = qD_n \left[n(x_2) \exp(-\phi(x_2)/V_T) - n(x_1) \exp(-\phi(x_1)/V_T) \right]
\]

\[
\int_{x_1}^{x_2} \exp(-\phi(x)/V_T) dx
\]

(9.3)

With the following boundary conditions

\[\phi(x_1) = 0; \quad n(x_1) = N_S; \]
\[\phi(x_2) = V_D; \quad n(x_2) = N_D; \]

(9.4)

Equation (9.3) reduces to

\[
J_n = \frac{qD_n N_S}{\int_{x_1}^{x_2} \exp(-\phi(x)/V_T) dx}
\]

(9.5)

Note that the preceding equations derived for SIT also can be used to find current in any devices controlled by a potential barrier, such as a bipolar transistor or a MOS transistor operating in subthreshold mode, or in a Schottky diode.

9.3 Characteristics of Static Induction Transistor

Samples of the potential distribution in SI devices are shown in Fig. 9.3 [1, 20]. The vicinity of the potential barrier was approximated by Plotka [11, 12] by using parabolic formulas (Fig. 9.4) along and across the channel.

\[
\phi(x) = \Phi \left[1 - \left(\frac{x}{L} - 1 \right)^2 \right]
\]

(9.6)

\[
\phi(y) = \Phi \left[1 - \left(\frac{y}{W} - 1 \right)^2 \right]
\]

(9.7)
Integrating Eq. (9.5) first along the channel and then across the channel yields a very simple formula for drain currents in n-channel SIT transistors

\[I_D = qD_p N_s Z \frac{W}{L} \exp \left(\frac{\Phi}{V_T} \right) \]

(9.8)

where \(\Phi \) is the potential barrier height in reference to the source potential, \(N_s \) is the electron concentration at the source, the \(W/L \) ratio describes the shape of the potential saddle in the vicinity of the barrier, and \(Z \) is the length of the source strip.

As barrier height \(\Phi \) can be a linear function of gate and drain voltages, \(I_D = qD_p N_s Z \frac{W}{L} \exp \left(\frac{a(V_{GS} + bV_{DS} + \Phi_0)}{V_T} \right) \)

(9.9)

Equation (9.9) describes the characteristics of a static induction transistor for small current range. For large current levels the device current is controlled by the space charge of moving carriers. In the one-dimensional (1D) case the potential distribution is described by the Poisson equation:

\[\frac{d^2\phi}{dx^2} = -\frac{\rho(x)}{\varepsilon_S \varepsilon_0} = \frac{I_{DS}}{A v(x)} \]

(9.10)

Where \(A \) is the effective device cross section and \(v(x) \) is carrier velocity. For a small electrical field \(v(x) = \mu E(x) \) and the solution of Eq. (9.10) is

\[I_{DS} = \frac{9}{8} V_{DS}^2 \mu E_s \varepsilon_0 \frac{A}{L^2} \]

(9.11)

and for a large electrical field \(v(x) = \text{const} \) and Eq. (9.10) results in:

\[I_{DS} = 2V_{DS} v_{sat} \varepsilon_0 \mu \frac{A}{L^2} \]

(9.12)

where \(L \) is the channel length and \(v_{sat} \approx 10^{11} \mu\text{m/s} \) is the carrier saturation velocity. In practical devices the current-voltage relationship is described by an exponential relationship Eq. (9.9) for small currents, a quadratic relationship eq. (9.11), and, finally, for large voltages by an almost linear relationship Eq. (9.12). The SIT characteristics drawn in linear and logarithmic scales are shown in Fig. 9.5 and Fig. 9.6, respectively.
9.4 Bipolar Mode Operation of SI devices
(BSIT)

The bipolar mode of operation of SIT was first reported in 1976 by Nishizawa and Wilamowski [8, 9]. Several complex theories for the bipolar mode of operation were developed [2, 5, 6, 10, 23, 24], but actually the simple Eq. (9.5) works well not only for the typical mode of the SIT operation, but also for the bipolar mode of the SIT operation. Furthermore, the same formula works very well for classical bipolar transistors. Typical characteristics of the SI transistor operating in both normal and bipolar modes are shown in Figs. 9.7 and Fig. 9.8.

A potential barrier controls the current in the SIT and it is given by

\[I_n = \frac{q D_n N_S}{\int_{x_1}^{x_2} \exp(-\phi(x)/V_T) dx} \]

(9.13)

where \(\phi(x) \) is the profile of the potential barrier along the channel.

For example, in the case of \(npn \) bipolar transistors the potential distribution across the base in reference to emitter potential at the reference impurity level \(N_E = N_S \) is described by:

\[\phi(x) = V_T \ln \left(\frac{N_F(x)}{n_i^2} \right) \exp \left(-\frac{V_{BE}}{V_T} \right) \]

(9.14)

After inserting Eq. (9.14) into (9.13) one can obtain the well-known equation for electron current injected into the base

\[I_n = \frac{q D_n n_i^2}{\int_{x_1}^{x_2} N_F(x) dx} \exp \left(\frac{V_{BE}}{V_T} \right) \]

(9.15)

If Eq. (9.13) is valid for SIT and BJT then one may assume that it is also valid for the bipolar mode of operation of the SIT transistor. This is a well-known equation for the collector current in the bipolar transistor, but this time it was derived using the concept of current flow through a potential barrier.

9.5 Emitters for Static Induction Devices

One of the disadvantages of the SIT is the relatively flat shape of the potential barrier (Fig. 9.9a). This leads to slow, diffusion-based transport of carriers in the vicinity of the potential barrier. The carrier transit time can be estimated using the formula:

\[t_{\text{transit}} = \frac{L_{\text{eff}}}{D} \]

(9.16)

where \(L_{\text{eff}} \) is the effective length of the channel and \(D = \mu V_T \) is the diffusion constant. In the case of a traditional SIT transistor this channel length is \(\approx 2 \mu \text{m} \), while in the case of SIT transistors with sharper barriers (Fig. 9.9b) the channel length is reduced to about \(\approx 0.2 \mu \text{m} \). The corresponding transient times are 2 ns and 20 ps respectively.

The potential distributions shown in Fig. 9.3 are valid for SIT with an emitter made of a traditional \(p-n \) junction. A
much narrower potential barrier can be obtained when other types of emitter are used. There are two well-known emitters: (1) p-n junction (Fig. 9.10a); and (2) Schottky junction (Fig. 9.10b). For silicon devices p-n junctions have a forward voltage drop of 0.7–0.8 V while Schottky emitters have 0.2–0.3 V only. As the Schottky diode is a majority carrier device, carrier storage effect is negligible.

Another interesting emitter structure is shown in Fig. 9.10c. This emitter has all the advantages of the Schottky diode even though it is fabricated out of p-n junctions.

The concept of static induction devices can be used independently of the type of emitter shown in Fig. 9.10. With Schottky type and punch-through type emitters the potential barrier is much narrower and this results in faster response time and larger current gain in the bipolar mode of operation.

9.6 Static Induction Diode (SID)

The bipolar mode of operation of SIT also can be used to obtain diodes with low forward voltage drop and negligible carrier storage effect [2, 5, 13, 23, 24]. A static induction diode can be obtained by shorting a gate to the emitter of the static induction transistor. Such a diode has all the advantages of a static induction transistor such as thermal stability and short switching time. The cross section of such a diode is shown in Fig. 9.11.
The quality of the static induction diode can be further improved with more sophisticated emitters (Fig. 9.10b,c). The SI diode with Schottky emitter was described by Wilamowski in 1983 [17] (Fig. 9.12). A similar structure was later described by Baliga [1].

9.7 Lateral Punch-Through Transistor (LPTT)

Fabrications of SI transistors usually require very sophisticated technology. It is much simpler to fabricate a lateral punch-through transistor, which operates on the same principle and has similar characteristics [15]. The LPTT cross section is shown in Fig. 9.13 and its characteristics are shown in Fig. 9.14.

9.8 Static Induction Transistor Logic (SITL)

The static induction transistor logic (SITL) was proposed by Nishizawa and Wilamowski [8, 9]. This logic circuit has almost 100 times better power-delay product than its F^2L competitor. Such a great improvement of the power-delay product is possible because the SITL structure has a significantly smaller junction parasitic capacitance and voltage swing is reduced. Figures 9.15 and 9.16 illustrate the concept of SITL. Measured characteristics of the n-channel transistor of the static induction logic are shown in Fig. 9.17.

9.9 BJT Saturation Protected by SIT

The SI transistor also can be used instead of a Schottky diode to protect a bipolar junction transistor against saturation [20]. This leads to faster switching time. The concept is shown in Figs. 9.18 and 9.19. Note that this approach is advantageous to the solution with Schottky diode because it does not require additional area on a chip and does not introduce additional capacitance between the base and the collector. The base
collector capacitance is always enlarged by the Miller effect and this leads to slower switching in the case of the solution with the Schottky diode.

9.10 Static Induction MOS Transistor (SIMOS)

The punch-through transistor with MOS controlled gate was described in 1983 [18, 9]. In the structure in Fig. 9.20a current can flow in a similar fashion as in the lateral punch-through transistor [15]. In this mode of operation, carriers are moving far from the surface with a velocity close to saturation. The real advantage of such a structure is the very low gate capacitance.

Another implementation of SIMOS is shown in Fig. 9.21. The buried p^+-layer is connected to the substrate, which has a

FIGURE 9.15 Cross section of SIT logic.

FIGURE 9.16 Diagram of SIT logic.

FIGURE 9.17 Measured characteristic of an n-channel transistor of the logic circuit of Fig. 9.16.

FIGURE 9.18 Protection of a bipolar transistor against deep saturation: (a) using a Schottky diode; and (b) using SIT.

FIGURE 9.19 Cross sections of bipolar transistors protected against deep saturation using SIT.

FIGURE 9.20 MOS-controlled punch-through transistor: (a) transistor in the punch-through mode for the negative gate potential; and (b) transistor in the on-state for the positive gate potential.
large negative potential. As a result the potential barrier is high and the emitter-drain current cannot flow. The punch-through current may start to flow when the positive voltage is applied to the gate and in this way the potential barrier is lowered. The p-implant layer is depleted and due to the high horizontal electrical field under the gate there is no charge accumulation under this gate. Such a transistor has several advantages over the traditional MOS are:

1. The gate capacitance is very small because there is no accumulation layer under the gate;
2. carriers are moving with a velocity close to saturation velocity; and
3. much lower substrate doping and the existing depletion layer lead to much smaller drain capacitance.

The device operates in a similar fashion as the MOS transistor in subthreshold conditions, but this process occurs at much higher current levels. Such a “bipolar mode” of operation may have many advantages in VLSI applications.

9.11 Space-Charge Limiting Load (SCLL)

Using the concept of the space-charge limited current flow (see Fig. 9.22), it is possible to fabricate very large resistors on a very small area. Moreover, these resistors have a very small parasitic capacitance. The 50-kΩ resistor requires only several square μm using 2-μm technology [22].

Depending upon the value of the electric field, the device current is described by the following two equations. For a small electrical field \(v(x) = \mu E(x) \)

\[
I_{DS} = \frac{9}{8} V_{DS}^2 \mu \varepsilon_0 \frac{A}{L^2} \tag{9.17}
\]

and for a large electrical field \(v(x) = \text{const} \)

\[
I_{DS} = 2 V_{DS} v_{sat} \varepsilon_0 \frac{A}{L^2} \tag{9.18}
\]

Moreover, these resistors, which are based on the space-charge limit flow, have a very small parasitic capacitance.

9.12 Power MOS Transistors

Power MOS transistors are being used for fast switching power supplies and for switching power converters. They can be driven with relatively small power and switching frequencies could be very high. High switching frequencies lead to compact circuit implementations with small inductors and small capacitances. Basically only two technologies (VMOS and DMOS) are used for power MOS devices as shown in Figs. 9.23 and 9.24, respectively.

A more popular structure is the DMOS shown in Fig. 9.24. This structure also uses the static induction transistor concept. Note that for large drain voltages the n-region is depleted from carriers and the statically induced electrical field in the vicinity of the virtual drain is significantly reduced. As a result, this transistor may withstand much larger drain voltages and the effect of channel length modulation also is significantly reduced. The latter effect leads to larger output resistances of the transistor. Therefore, the drain current is less sensitive to

![FIGURE 9.21 Static induction MOS structure: (a) cross section; and (b) top view.](image1)

![FIGURE 9.22 Space-charge limiting load (SCLL).](image2)

![FIGURE 9.23 Cross section of the VMOS transistor.](image3)
drain voltage variations. The structure in Fig. 9.24 can be considered as a composite of the MOS transistor and the SIT transistor as it is shown in Fig. 9.25.

The major disadvantage of power MOS transistors is their relatively large drain series resistance and much smaller transconductance in comparison to bipolar transistors. Both of these parameters can be improved dramatically by a simple change of the type of drain. In the case of an n-channel device, this change would be from an n-type to a p-type. This way, the integrated structure being built has a diagram of a MOS transistor integrated with a bipolar transistor. Such a structure has \(\beta \) times larger transconductance (\(\beta \) is the current gain of a bipolar transistor) and much smaller series resistance due to the conductivity modulation effect caused by holes injected into the lightly doped drain region. Such devices are known as insulated gate bipolar transistors (IGBT) as shown in Fig. 9.26. Their main disadvantage is that of large switching time limited primarily by the poor switching performance of the bipolar transistor. Another difficulty is related to a possible latch-up action of four layer \(n^+ p n^- p^+ \)-structure. This undesirable effect could be suppressed by using a heavily doped \(p^+ \)-region in the base of the \(npn \) structure, which leads to significant reduction of the current gain of this parasitic transistor. The gain of the \(pnp \) transistor must be kept large so that the transconductance of the entire device is also large. The IGBTs have breakdown voltages of up to 1500 V and turn-off times in the range of 0.1 to 0.5 \(\mu \)s. They may operate with currents \(>100 \) A with a forward voltage drop of \(\approx 3 \) V.

9.13 Static Induction Thyristor

There are several special semiconductor devices dedicated to high-power applications. The most popular is a thyristor known as the silicon control rectifier (SCR). This device has a four-layer structure (Fig 9.27a) and it can be considered as two transistors \(npn \) and \(pnp \) connected as shown in Fig. 9.27b.

In a normal mode of operation (the anode has positive potential) only one junction is reverse biased and it can be represented by capacitance \(C \). A spike of anode voltage can therefore get through capacitor \(C \) and it can trigger SRC. This behavior is not acceptable in practical application and therefore as Fig. 9.28 shows a different device structure is being used. Note that shorting the gate to the cathode by resistor \(R \) makes it much more difficult to trigger the \(npn \) transistor by spike of anode voltage. This way, rapid anode voltage changes are not able to trigger a thyristor. Therefore, this structure has a very large \(dV/dt \) parameter. At the same time, much energy...
is required to trigger the thyristor with the gate signal, which is an undesirable effect and switching on time (described by the \(\frac{dV}{dt} \) parameter) is lengthy.

Most of the SCRs sold on the market consist of an integrated structure composed of two or more thyristors. This structure has both large \(\frac{dV}{dt} \) and \(\frac{di}{dt} \) parameters. This structure consists of an internal thyristor, which significantly amplifies the gate signal.

One can notice that the classical thyristor as shown in Fig. 9.27 can be turned off by the gate voltage while the integrated SCR shown in Fig. 9.29 can only be turned off by reducing anode current to zero. Most of the SCRs sold on the market have an integrated structure composed of two or more thyristors. This structure has both large \(\frac{dV}{dt} \) and \(\frac{di}{dt} \) parameters.

For dc operation it is important to have a thyristor that can be turned off by the gate voltage. Such a thyristor has a structure similar to that shown in Fig. 9.27. It is important, however, to have significantly different current gains \(\beta \) for pnp and npn transistors. The current gain of an npn transistor should be as large as possible and the current gain of a pnp transistor should be small. The product of \(\beta_{npn} \) and \(\beta_{pnp} \) should be larger than unity. This can be easily implemented using the SI structure as shown in Fig. 9.30.

References

